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Abstract Background Unmeasured confounding is one of

the principal problems in pharmacoepidemiologic studies.

Several methods have been proposed to detect or control

for unmeasured confounding either at the study design

phase or the data analysis phase. Aim of the Review To

provide an overview of commonly used methods to detect

or control for unmeasured confounding and to provide

recommendations for proper application in pharmacoepi-

demiology. Methods/Results Methods to control for

unmeasured confounding in the design phase of a study are

case only designs (e.g., case-crossover, case-time control,

self-controlled case series) and the prior event rate ratio

adjustment method. Methods that can be applied in the data

analysis phase include, negative control method, pertur-

bation variable method, instrumental variable methods,

sensitivity analysis, and ecological analysis. A separate

group of methods are those in which additional information

on confounders is collected from a substudy. The latter

group includes external adjustment, propensity score cali-

bration, two-stage sampling, and multiple imputation.

Conclusion As the performance and application of the

methods to handle unmeasured confounding may differ

across studies and across databases, we stress the impor-

tance of using both statistical evidence and substantial

clinical knowledge for interpretation of the study results.
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Impacts on practice

• Unmeasured confounding is a potential source of bias

in pharmacoepidemiologic studies, which can be

detected and controlled.

• The method to detect and control for unmeasured

confounding in applied pharmacoepidemiologic

research should be carefully selected, and depends on

the study and databases.

Introduction

Randomized controlled trials are considered the gold

standard to estimate the effect of a pharmacological

treatment [1–3]. However, randomized trials may be of

limited use or not feasible in several situations, for

instance, in the case of rare adverse drug events, or when

the outcome of interest is far ahead in the future [1–5]. In

such situations, observational pharmacoepidemiologic

studies may be viable alternatives to provide important

evidence on the comparative safety and effectiveness of

drugs [1, 2, 5–8].
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In observational studies, treatment assignment is outside

the control of the investigator. In daily clinical practice,

treatment assignment is generally based on the physician’s

perception of a patient’s risk of a particular outcome [6, 9].

Because of the absence of randomization, prognostic

patient characteristics are typically unevenly distributed

among the treatment groups. Hence, a direct comparison

between treatment groups will likely be biased due to

confounding [6, 9–11].

A confounder is a risk factor for the outcome and is

associated with the exposure, yet does not lie on the causal

pathway between exposure and the outcome. Moreover, a

confounder may bias the observed effect of the exposure on

the outcome [12, 13]. For example in Fig. 1, the variable

pre-treatment blood pressure is associated with treatment

status, angiotensin-converting-enzyme (ACE) inhibitor use,

and an independent risk factor for the outcome, myocardial

infarction. There may also be unmeasured or poorly mea-

sured risk factors (e.g., smoking) of the outcome that are

also associated with the exposure. These are referred to as

unmeasured, unobserved, or residual confounders [12].

Several methods have been proposed to detect or control

for measured and unmeasured confounding either in the

study design or the data analysis phase [8, 9, 14–19].

Reviews of these methods often focus on methods to

control for measured confounding [9, 20, 21].

Aim of the review

In this review, we focus on methods that are mostly used to

detect or control for unmeasured confounding. Hence, the

objective of this review is to provide an overview of

commonly used methods to detect or control for unmea-

sured confounding in observational studies and to provide

recommendations for proper applications in

pharmacoepidemiology.

Methods

Sources of confounding in pharmacoepidemiology

Pharmacoepidemiologic studies to detect unintended and

intended effects of drugs are often conducted using elec-

tronic healthcare databases (e.g., pharmacy, general prac-

tice, and hospital records). These data are collected for

reasons unrelated to a particular research question and,

therefore, may have missing, limited, or inaccurate infor-

mation on potential confounding variables such as smok-

ing, alcohol consumption, body-mass index, frailty, and

disease severity [6, 22]. In addition, there may be variables

for which it is unknown that they are risk factors for the

outcome (e.g., genetic variants). However, it seems unli-

kely that these unknown variables will affect treatment

decisions made by the physician (for the reason that the

physician does not know that these are risk factors for the

outcome). Hence, unknown risk factors for the outcome

may be less likely of a problem in pharmacoepidemiologic

studies than known (such as smoking), yet unmeasured,

risk factors for the outcome.

Methods to control for measured confounding

Confounding can be controlled by design or in the analysis

phase of a study. For an overview of the methods that

control for measured confounding, we refer to the review

by Klungel et al. [9]. In short, by design, restriction and

matching can be used to control for measured confounding.

Stratification, standardization, multivariable regression,

and propensity score methods can be applied in the analysis

phase to control for measured confounders. In the follow-

ing sections, we will discuss methods to detect or control

unmeasured confounding in the context of pharmacoepi-

demiologic research. We will use the terms ‘‘treatment’’

and ‘‘exposure’’ interchangeably.

Methods to detect or control for unmeasured

confounding in the design phase

Case only designs

In case-only designs, only those subjects who experience

the outcome of interest are included (i.e., ‘cases only’) and

all subjects act as their own control. Since comparisons are

made within individuals, confounding by characteristics

that are constant over time, such as sex, is eliminated.

Different types of case-only designs include case-

ACE-inhibitor Myocardial Infraction 

Pre-treatment Blood 
Pressure 

(measured) 

Smoking 
(unmeasured or poorly measured) 

Fig. 1 Directed acyclic graph of observational studies to illustrate the

concept of confounding. Treatment/Exposure ACE-inhibitor (an-

giotensin converting enzyme inhibitor), Outcome Myocardial Infarc-

tion, Measured confounder Pre-treatment blood pressure,

Unmeasured/poorly measured confounder Smoking
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crossover, case-time control, and self-controlled case ser-

ies. Brief descriptions of these study designs are given

below.

Case-crossover design The case-crossover design (CCO)

was introduced by Maclure [23] in 1991 to study the short-

term effects of intermittent or time-varying exposures on

the risk of acute outcomes where a conventional case–

control study may not be feasible [23–26]. The CCO design

has been used in multiple pharmacoepidemiologic studies

to estimate drug effects [26–29]. This design adopts a case–

control perspective through a comparison of treatment

status before the occurrence of the outcome and treatment

status during one or more reference period(s) of the same

subjects, in which the outcome did not occur. Data are

usually analyzed using a conditional logistic regression

model, which accounts for the matched nature of the data.

Subjects who chronically use a certain treatment (i.e., in

which treatment status does not change) do not contribute

to the analysis [30]. Details on the analysis of the CCO

design (using e.g., SAS) can be found in Wang et al. [31].

The schematic representation of the CCO design is shown

in Fig. 2. In a case-crossover design, exposure status at the

time of the outcome (i.e., the hazard period, B) is con-

trasted with exposure status during a control period (A).

In the CCO design, the choice of exposure time win-

dows is crucial, as well as the timing of the control period

[30]. Moreover, exposure misclassification and recall bias

are likely if exposure status is assessed, e.g., by question-

naire, as patients may not remember the drugs they have

taken, especially for periods long before the outcome

occurred. On the other hand, bias can result from temporal

changes in confounding variables, e.g., occurrence of a

disease. Time-varying confounding can be accounted for in

the analysis, provided that the confounders are measured.

Case-time control design In 1995, Suissa [30] proposed

the case-time control (CTC) design, also known as case–

control-crossover design, which is an extension of the CCO

design and uses exposure information from a historical

control group [24, 30]. The CTC odds ratio is the case-

crossover odds ratio (from the cases) divided by the time

trend odds ratio (from the controls) (Fig. 3) [32]. Like the

CCO, it allows studying intermittent exposures with

transient effects, while accounting for confounding by

variables that do not change over time. CTC may be con-

sidered if there are strong time trends in treatment pre-

scription [25]. The main advantage of the CTC over CCO

is that it adjusts for natural time trends in drug utilization.

However, it is less precise than the conventional design and

does not deal with time to event and death as an outcome.

The Schematic representation of the CTC is shown in

Fig. 3. More information about this design can be found in

Schneeweiss et al. [25], Hernández-Dı́az et al. [32], and

Schneider et al. [33].

Self-controlled case-series design Farrington et al. pro-

posed the self-controlled case-series (SCCS) design in

1995 to assess post-licensure adverse events related to

vaccines, and more generally associations between acute

outcomes and transient exposures [4]. The SCCS design

adopts a cohort perspective through a comparison of the

rate of the outcome of interest between exposed and

unexposed time periods for each individual. Although the

SCCS design was originally developed to evaluate vaccine

safety, it has been increasingly used in pharmacoepidemi-

ologic studies using healthcare databases [24, 34, 35]. In

this design, individual follow-up time is divided into

exposed and unexposed periods, which may vary in length

of duration. A comparison is made within subjects,

between the incidence rates of the outcome of interest in

these periods and thus controls for time-fixed confounders

(measured or unmeasured) (Fig. 4) [36]. The key

assumptions of this design are: (1) events are possibly

recurrent and occur randomly over the study period; (2) the

occurrence of an event must not alter the probability of

subsequent exposure; and (3) the occurrence of an event

should not censor the observation period [34–36]. The

procedure for implementation of the SCCS design in the

statistical software (e.g., SAS, R, and STATA) can be

found in Whitaker et al. [36] or in the Ref. [37].

Prior event rate ratio adjustment

The recently proposed prior event rate ratio (PERR)

adjustment method [38–42], is a type of self-controlled

design in which the exposure effect is estimated by the

Exposure in hazard 
period immediately 
before the outcome 

Usual frequency of the 
exposure/normal background 
risk period (control period) 

B A 

Outcome 

Fig. 2 Schematic representation of the case-crossover design. In a

case-crossover design, exposure status at the time of the outcome (i.e.,

the hazard period, B) is contrasted with exposure status during a

control period (A). The x-axis represents time

Outcome 

Case-matched 
window 

Control window* Control

Case window Control window* 
Case

Fig. 3 Schematic representation of the case-time control design. The

x-axis represents the time. Asterisk Historical control group

716 Int J Clin Pharm (2016) 38:714–723

123



ratio of two rate ratios (RRs): RR after the initiation of an

exposure (RR.post) and the RR prior to initiation of that

exposure (RR.prior) (Fig. 5) [15, 39, 43]. The PERR

adjustment method can be used in a setting where neither

the exposed nor unexposed patients are treated with the

study drugs before the start of the follow-up [39]. In this

setting, the rate ratio (RR) observed in the prior period (i.e.,

before initiation of the exposure) is due to differences in

patient characteristics between the two study groups (of

future users and future non-users). The RR in the post

period, after initiation of the exposure, is due to those

differences in confounders as well as the treatment under

study.

The treatment effect in the post period can be separated

from the effect due to differences in confounders by taking

the ratio of the RRs observed in the two periods:

PERR ¼ Rate ratio during post period

Rate ratio during prior period
¼ RRpost

RRprior

ð1Þ

PERR can be estimated using incidence rate ratios or

hazard ratios [40]. Confidence intervals can be obtained by

bootstrapping as it is difficult to estimate the covariance

between the RRs of the prior and post periods [38, 39, 41].

This method requires assumptions: constant temporal

effects (i.e., confounding effects are constant across prr and

post exposure initiation periods), there is no confounder-

by-treatment interaction, and outcomes are non-lethal

events [14, 39, 42].

Methods to detect or control for unmeasured

confounding in the analysis phase

Negative control

Negative controls (NC) have been proposed to detect

unmeasured confounding in epidemiological studies [44].

There are two types of negative controls: exposure controls

and outcome controls (Fig. 6) [44, 45]. A negative expo-

sure control is an exposure that is known to be unrelated to

the outcome under study, whereas a negative outcome

control is an outcome that is known to be unrelated to the

exposure under study. An example can be found in a study

of annual influenza vaccination [46], in which an expected

Fig. 4 Schematic

representation of the self-

controlled case-series design.

The x-axis represents time. Grey

periods indicate baseline

(unexposed) periods. Black

periods indicate exposed time.

‘‘X’’ indicates outcome events

Post Time Period Prior Time Period 

Group 1 

Group 0 

Time 

Risk of outcome (post 
period) is due to 
exposure and/or 
patients’ characteristics 

Risk of outcome 
(prior period) is only 
due to patients’ 
characteristics 

In
iti

at
io

n 
of

In
te

rv
en

tio
n

Fig. 5 Prior event rate ratio adjustment method. (Adapted from

Uddin et al. [43]). The x-axis represents time. The prior time period

indicates the time period before an intervention is initiated; the post

time period refers to the period after initiation of the intervention. The

black bar indicates exposed subjects. The white bars indicate

unexposed subjects

Ny X Y 

C 

U 

Nx X Y 

C 

U 

Fig. 6 Directed acyclic graph of an ideal negative control outcome

(Ny) and negative control exposure (Nx). Here X represents exposure,

Y outcome, C a measured confounder, and U represents an

unmeasured confounder. Dashed line represents a possible correlation

between confounders

Int J Clin Pharm (2016) 38:714–723 717

123



null-effect of the vaccine during summer periods (when

hardly any influenza virus is circulating) served as a control

on the assumption of no unmeasured confounding. If the

NC is empirically associated with the exposure (or out-

come) after adjustment for measured confounders, the

observed association may be the result of unmeasured

confounding [44, 47, 48]. However, a non-null association

will only suggest unmeasured confounding for the relation

between the NC exposure and the outcome (or exposure

and NC outcome) and does not necessarily indicate

unmeasured confounding of the exposure–outcome relation

of interest [49]. Hence subject matter knowledge is

essential for choosing a negative control [44]. Detailed

explanations of the NC can be found in Lipsitch et al. [44]

and Flanders et al. [47].

Instrumental variable

Instrumental variable (IV) methods were invented over

70 years ago [18]. They have primarily been used in

econometrics and social sciences, but appeared in epi-

demiologic research over the last decades, because

of the potential to control for unmeasured confounding

[7, 50–52]. An IV is a variable that satisfies three key

assumptions: (1) the IV is associated with the treat-

ment/exposure under study, (2) the IV affects the outcome

only through the exposure (exclusion restriction), and (3)

the IV is independent of confounders [53–55]. In obser-

vational studies, IV analysis tries to mimic a randomized

study in which treatment assignment is related to the actual

treatment received and treatment assignment only affects

outcome through the treatment received (hence, the term

pseudo-randomisation that is sometimes used for IV anal-

ysis) [55]. As an IV is assumed to affect the outcome only

through the treatment/exposure under study and an IV is

independent of confounders, this implies that all measured

and unmeasured confounders are equally distributed among

IV categories (similar to a randomized controlled trial,

where measured and unmeasured confounders are equally

distributed between treatment arms).

An example of an IV in an observational study is

illustrated in Fig. 7 [56]. The idea behind this IV, physician

prescribing preference, is that physicians differ with

respect to their preference for conventional versus atypical

antipsychotic medication: to a similar patient, one physi-

cian will prescribe conventional antipsychotic medication

while another physician will prescribe an atypical

antipsychotic medication. Furthermore, it is assumed that

the preference is only influencing mortality (the outcome)

through the exposure (conventional or atypical antipsy-

chotic medication) and is independent of patient charac-

teristics [56]. A possible limitation of IV analysis is that of

weak instruments (i.e., IV is weakly associated with the

exposure), which leads to decreased statistical efficiency

and biased IV estimates [53, 57]. An overview of IV

analysis with statistical software code is given by Baiocchi

et al. [7]. Moreover, more statistical software for IV

analyses can be found in Brookhart et al. [58], or in the

Ref. [59].

Sensitivity analysis

In 1959, Cornfield et al. first introduced the idea of sensitivity

analysis for unmeasured confounding. In a sensitivity anal-

ysis, one can not control for unmeasured confounding, but

can merely evaluate what the potential impact of unmeasured

confounding can be on the estimate of the treatment–out-

come association [17]. Specifically, a sensitivity analysis of

unmeasured confounding is a data-driven method where we

do need to specify the sensitivity parameters with their dis-

tributions [60, 61]. Moreover, it assesses how sensitive an

estimated treatment effect is to unmeasured confounding and

when conclusions from a study will change [60, 61] (and—

importantly—what the unmeasured confounding then

should look like). If unmeasured confounding should be

unrealistically large (e.g., very strong association between

unmeasured confounders and outcome) in order to nullify the

observed treatment–outcome relation, researchers may

argue that it is unlikely that the observed relation is fully

attributable to unmeasured confounding. Sensitivity analy-

ses allow us for making a comparison of different scenarios

and there is no restriction on the distribution of the unmea-

sured confounder(s). For details of sensitivity analysis

methods, we refer to the studies by Lin et al. [60], Greenland

[62], and Schneeweiss [17].

Perturbation variable

The perturbation variable (PV) analysis is a data-mining

approach and has been recommended for use in detecting

Physician Prescribing 
Preference 

Conventional versus 
Atypical antipsychotic 

medication 
Mortality 

Age 
(measured) 

Frailty 
(unmeasured or poorly measured) 

Fig. 7 Directed acyclic graph of an observational study of antipsy-

chotic medication and mortality to illustrate the concept of instru-

mental variable analysis. Instrumental variable Physician prescribing

preference, Treatment/Exposure Conventional versus atypical

antipsychotic medication, Outcome Mortality, Measured confounder

Age, Unmeasured/poorly measured confounder Frailty
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(via the perturbation test) and controlling (via adjustment

for the PVs) for unmeasured confounding in observational

studies [63]. A PV is a variable that should be easy to find

or that can be measured easily and is potentially associated,

though perhaps only very weakly, with unmeasured con-

founders (Fig. 8) [44, 47, 63]. The PV method relies on

collecting as many PVs as possible, which then indirectly

provide information on the unmeasured confounders.

When the number of PVs increases, the power of the per-

turbation test increases and the bias due to unmeasured

confounding after PV adjustment decreases [63]. However,

this method is data driven and different from the sensitivity

analysis of unmeasured confounding where we do need to

specify the sensitivity parameters or assume distributions

for them [64]. Details on this data-driven method can be

found in Lee [63].

Ecological analysis

Wen and Kramer proposed the ecologic analysis as a

method to handle confounding by indication at the indi-

vidual level when a study investigates the intended effects

of drugs [65, 66]. This method is based on differences in

e.g., exposure patters between regions or countries. Even if

confounding acts at the individual level within regions, a

comparison across regions controls for that confounding, if

confounders are equally distributed across the regions. An

example of an ecological analysis is a comparison between,

e.g., countries that differ in treatment profiles. If countries

differ in terms of occurrence of the outcome, this may be

due to differences in treatment. However, countries may

differ in more respects than only treatment rates, thus

leading to the so-called ‘ecological fallacy’ [9]. Moreover,

it has low statistical power by the reduced number of

experimental units and provides little information regard-

ing the individuals in the compared groups [9, 67].

Sub-studies to control for unmeasured confounding

Instead of controlling for unmeasured confounding in the

design or analysis phase of a pharmacoepidemiologic

study, one could collect additional information on

unmeasured confounding in a subset of the study and

incorporate this additional information in the overall

analysis of the entire study, in order to control for

unmeasured confounding. Different types of methods

include external adjustment, propensity score calibration,

two-stage sampling, and multiple imputations. Brief

descriptions of these methods are given below.

External adjustment

In the external adjustment method, extra information on

clinical risk factors is collected on a subsample of indi-

viduals and that are used to correct for unmeasured con-

founders in the main study [68]. Requirements are that the

subsample must be a representative sample and all con-

founders should be identified [68]. A limitation of this

method is that it does not consider the joint effect of

multiple confounders that may add up or cancel out [68].

Propensity score calibration

Propensity score analysis, proposed by Rosenbaum in and

Rubin [69], is a commonly used approach to control for

measured confounding. The propensity score (PS) is first

estimated as the probability of receiving a treatment versus

no (another) treatment conditional on measured con-

founders. Next, the PS is used as a matching, stratifying, a

weighting variable, or included as a covariate in a model

regressing the outcome on the exposure. Conventional PS

methods can only control for measured confounding [70].

Propensity score calibration (PSC) was developed by

Stürmer et al. [71] to control for multiple confounders that

are measured in a subset of the study only. Using this

method, researchers can control for the joint effect of

multiple unmeasured confounders in the main study by

using variables that are observed in the validation substudy

[68, 71–73]. PSC combines propensity scores and regres-

sion calibration to control for unmeasured confounding

variable [68, 71–73]. First, a propensity score (PS) is

estimated in the main study similar to the conventional PS

analysis. This PS can be viewed as a variable measured

with error (‘‘error-prone’’ PS) when additional confounders

are unobserved, either due to the lack of information on

important predictors of the exposure (unmeasured vari-

ables) or due to imperfectly measured predictors. Second,

in a data-rich subset, an error-prone PS (identical in its

determinants to the error-prone PS in the main study) and a

‘gold-standard’ PS are estimated. This subset includes

variables that are not measured (or measured with error) in

the main study. The ‘gold-standard’ PS includes additional

important determinants of the exposure that were unob-

served in the main study. Third, the error in the main study

PS is estimated in the validation study by directly

Y 

PV

X

C 

U Fig. 8 Relations between

exposure (X), outcome (Y),

confounding variable (C),

perturbation variable (PV), and

a unmeasured confounder (U)
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comparing the PS containing the same information as the

main study PS (i.e., error-prone PS) with the gold-standard

PS. Last, the regression calibration is used to adjust the

main study PS (i.e., error-prone PS) for that error. PSC

does not require outcome information to be available in the

validation study, but it helps to check the assumptions of

PSC. A key assumption is the so-called surrogacy

assumption, i.e., the error-prone PS is a valid surrogate for

the gold-standard PS [68, 72].

Two-stage sampling

Two-stage sampling (TSS) designs, similar to the PSC, rely

on an internal validation study to collect information on

covariates that were not measured in the main study [68].

As such, TSS is an efficient method to collect information

on initially unobserved confounders and predominantly

used in case–control studies [16, 74]. This means infor-

mation on unmeasured confounders is collected in a sample

of the study population and this information is extrapolated

to the entire study population. Hence, confounding can be

adjusted for by confounder information that was only

collected in a sample of the study population. Several

methods of sampling have been described, for example,

obtaining information on cases only, or on samples of cases

and controls [75]. The optimal size of the sample depends

on the true disease model, and the association between the

information in the dataset and the information in the

sample [75]. A priori, such information is typically

unknown and it is, therefore, difficult to estimate the

optimal size before data is collected. TSS may become

problematic in anonymized databases in which name and

postal addresses of patients are lacking and, hence, ques-

tionnaires cannot be sent to these persons.

Multiple imputations

Multiple imputations (MI) has been used to overcome bias

due to unmeasured confounding in pharmacoepidemiologic

studies [73]. It requires a sub-study or validation sample,

similar to the PSC and two-stage sampling. When the sub-

study contains outcome information as well as information

on confounders that are unmeasured for the rest of the

study population, MI can be used to impute the missing

information of those confounders [73]. One of the advan-

tages of the MI over PSC is that it does not require the

surrogacy assumption of regression calibration. Both

methods require that missing confounder values can be

predicted using observed information, i.e., that missing

data are missing at random [76]. MI does not perform well

when the majority of the data is missing, which may be

realistic in pharmacoepidemiologic studies [77]. The

statistical software for multiple imputation can be found in

the Refs. [78–80].

Conclusions

Unmeasured confounding is an important source of bias in

pharmacoepidemiologic studies. Here, we provided an

overview of methods to detect or control for unmeasured

confounding in observational studies, highlighting their

strengths and limitations for pharmacoepidemiologic

studies. Choosing between methods to reduce bias due to

unmeasured confounding is a challenge.

Before applying any method to detect or control for

unmeasured confounding in a study, we recommend using

clinical knowledge combined with empirical evidence to

argue the extent to which unmeasured confounding is a rel-

evant threat to the validity of the study. For example, when

studies involve intended drug effects, confounding by indi-

cation may induce a large amount of bias in the exposure

effects (i.e., there is a big concern about unmeasured con-

founding) [2, 7, 81]. In that case, case-only designs or IV

analysis could be viable options provided that the assump-

tions of the methods are fulfilled. On the other hand, in

studies of adverse drugs effects in which individual risks of

particular outcomes (e.g., immunological adverse effects)

[2] is often unknown and does not influence the prescription

of drugs [2], the impact of unmeasured confounding may be

small and thus ordinary methods to control for confounding

may be sufficient (or even better) to estimate exposure

effects [82]. Nevertheless, when an adverse effect is well

known (e.g., relation between aspirin use and risk of gas-

trointestinal bleeding) [81, 82], individual risks are often

taken into account when prescribing (confounding by con-

traindication) and hence strong confounding may be present

and the methods that make the assumption of no unmeasured

confounding (e.g., propensity scores, regression adjustment)

may yield biased results.

If there is a strong concern about unmeasured con-

founding in a study, it may be worthwhile to replace the

assumption of no unmeasured confounding by perhaps

more plausible assumptions required for the methods to

control for unmeasured confounding. Importantly, some of

these assumptions (e.g., in IV analysis the assumption that

the IV affects the outcome only through the exposure) are

not verifiable using the data; hence, expert knowledge is

always necessary to justify them.

The type of data available for a pharmacoepidemiologic

study, exposure or outcome under study may guide the

choice for a method to handle unmeasured confounding.

For instance, IV analysis can be applied in a cohort/nested

case–control study and for any type of outcome. However,
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for small samples with rare outcomes, or in case of time-

varying exposure and confounders, IV analysis may pro-

vide biased results [54, 57]. Moreover, the PERR method

requires that data are available on two periods: i.e., before

and after initiation of the exposure and it is less useful

when studying e.g., mortality [39, 43]. Furthermore, the

case-only design uses information of cases only and also

outcome specific. In addition, two-stage sampling is used

predominantly in case–control studies. Hence, the possi-

bility to apply any of these (and the other discussed)

methods depends on the research question and/or avail-

ability of the data.

Finally, there are several fundamental differences

between methods that control for unmeasured confounding.

All methods make several strong assumptions to estimate

exposure effects and have several pros and cons in

empirical settings. The performance and application of the

methods strongly depend on the nature of confounding,

exposure, type of outcome, size of the sample in a partic-

ular clinical example. Therefore, we stress the importance

of a complete understanding of the methods before

applying them and a routine evaluation of the underlying

assumptions. As the performance and application of the

methods may differ across studies and across databases, we

also stress the importance of using both statistical evidence

and substantial clinical knowledge for interpretation of the

study results.
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