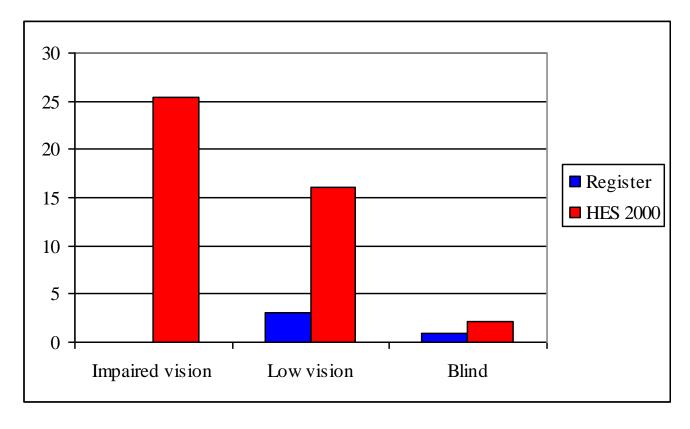


Data quality

Mika Gissler Research Professor, THL Visiting Professor, Karolinska Institutet Adjunct Professor, University of Oulu mika.gissler@ki.se or mika.gissler@thl.fi

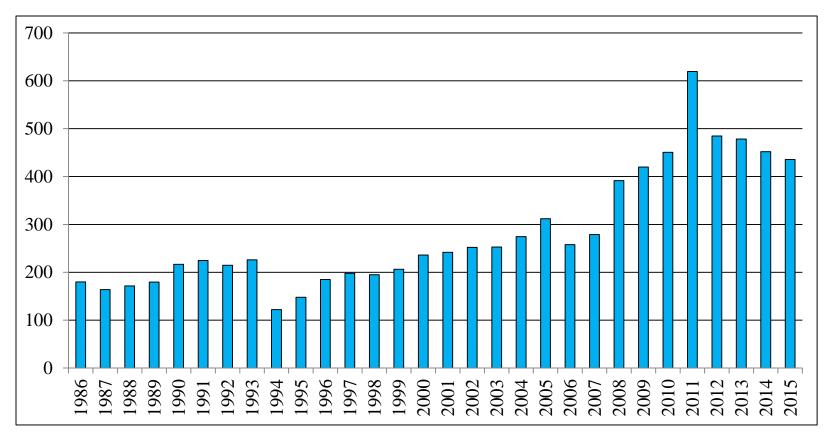
Data quality

- Completeness of records
 - Are all cases included in the register?
- Validity
 - Does the register data reflect reality?
- Study types
 - Internal validation
 - Comparisons to different studies and previous literature
 - Data linkages
 - Comparisons between the original data source and register data


Examples of studies

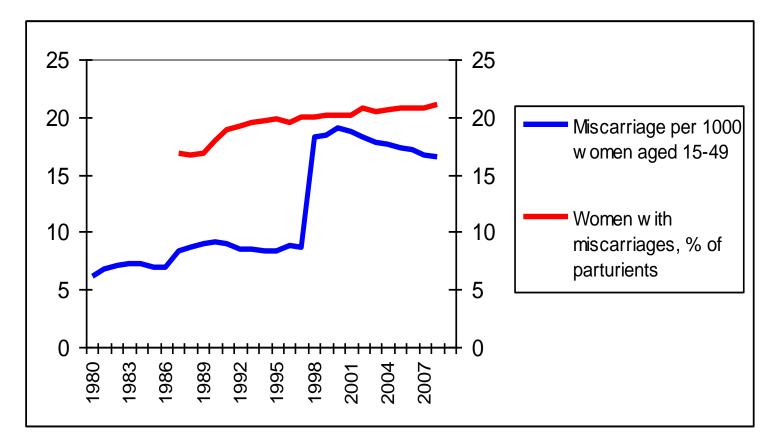
- Internal validation
 - How many diagnosis are correct by age and sex?
- Comparisons to different studies
 - Health examination study and register information
- Data linkages
 - Medical Birth Register and Central Population Register
- Comparisons between the original data source and register data
 - The Finnish Register on Induced Abortions included 483 cases of the 488 cases found in the hospitals = 99%

Prevalence of visual impairments per 1000 population, Finland 2000

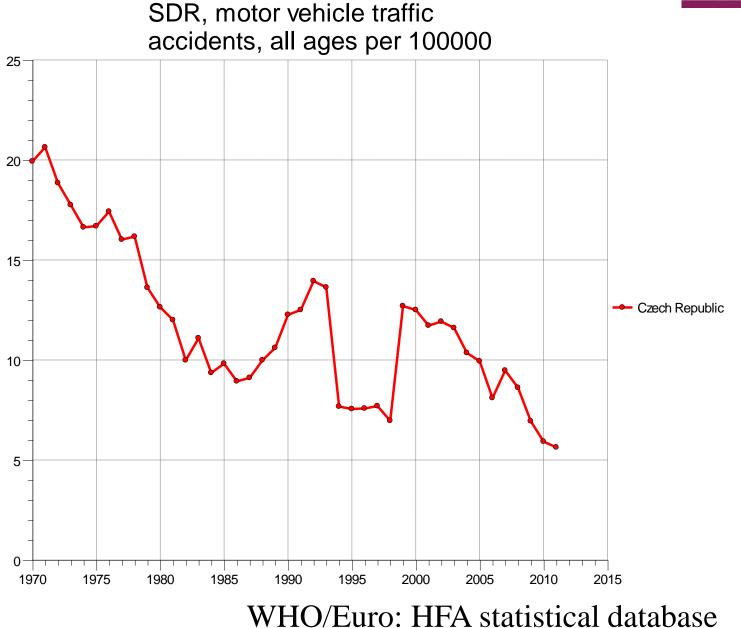


Not covered 19% 43%

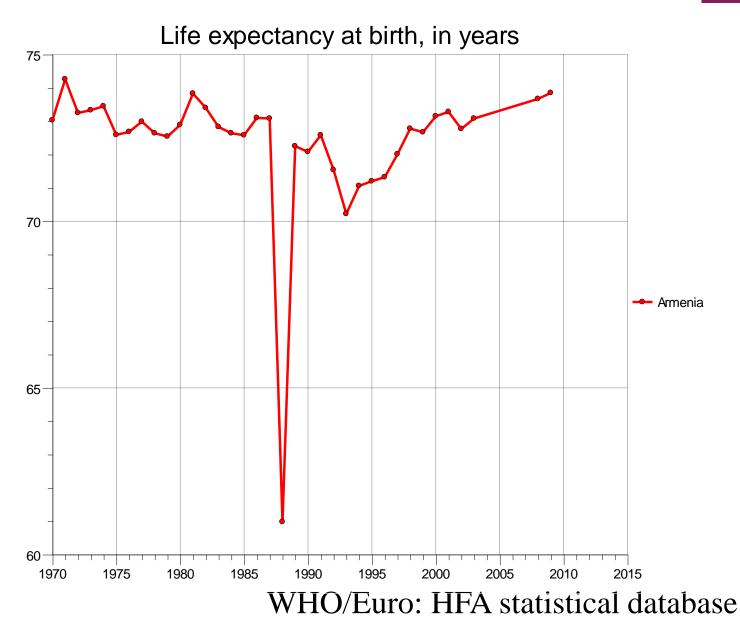
Diabetes per 100 000 population Finland 1980-2015

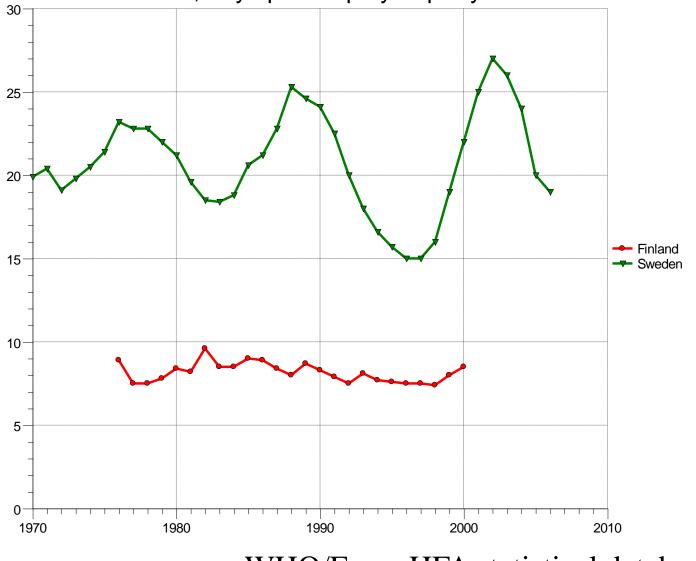


WHO/Euro: HFA statistical database


Miscarriages in Finland 1980-2008

THL: Medical Birth Register, Hospital Discharge Register





Absenteeism from work due to illness, days per employee per year

WHO/Euro: HFA statistical database

Essential to know

- How data is collected in the primary data source?
 - Inclusion/exclusion criteria
 - Definitions, classifications, concepts...
- What affects the data collection:
 - Legislation
 - Care practices
 - Local applications
- Local circumstances

How to measure quality?

Validity index

- If
 - -VAL = 1, if $I_{SK} = I_{SR}$ otherwise 0 otherwise 0
 - $-VAL_{e} = 1$, if $I_{SK} = I_{SR} \pm error$
 - where
 - I_{SK} = information in medical records
 - I_{SR} = information in register
 - N = sample size
- Then
 - VALID_i = 100 * Σ VAL_i / N - VALID_i = 100 * Σ VAL_{ie} / N.

Example (IVF in Finland)

	Source 1		
Source 2	+	-	
+	3296	1088	4384
-	1087	171227	172314
	4383	172315	176698
%			
+	1,9 %	0,6 %	2,5 %
-	0,6 %	96,9 %	97,5 %
	2,5 %	97,5 %	100,0 %

ALL CASES INCLUDED

Correctly reported:98.8%Mistakes - Source 1:0.6%New cases - Source 2:0.6%

Example (IVF in Finland)

	Source 1		
Source 2	+	-	
+	3296	1088	4384
-	1087	171227	172314
	4383	172315	176698
%			
+	1,9 %	0,6 %	2,5 %
-	0,6 %	96,9 %	97,5 %
	2,5 %	97,5 %	100,0 %

	Source 1		
Source 2	+	-	
+	3296	1088	4384
-	1087		1087
	4383	1088	5471
%			
+	60,2 %	19,9 %	80,1 %
_	19,9 %	0,0 %	19,9 %
	80,1 %	19,9 %	100,0 %

ALL CASES INCLUDED

Correctly reported:98.8%Mistakes - Source 1:0.6%New cases - Source 2:0.6%

NON-CASES EXCLUDED

60.2% 19.9% 19.9%

Example (IVF in Finland)

	Source 1		
Source 2	+	-	
	3296	1088	4384
	1087	171227	172314
	4383	172315	176698
%			
+	1,9 %	0,6 %	2,5 %
-	0,6 %	96,9 %	97,5 %
	2,5 %	97,5 %	100,0 %

Capture-recapture -method: 1087 * 1088 / 3296 = 359

It can be estimated that there are 359 (=0.2%) of the total population of 171 227) missing cases in this population.

Kappa score/statistics

- Hypothesis
 - cases not related to each other
 - information collected independently
 - both data sources are valid
- $K = (p_o p_c) / (N p_c)$
- 95 % CI= (K -1.96*s.e_(k), K +1.96*s.e_(k)), where s.e_(k) = [p_o * (N- p_o) / N * (N- p_c)²] ^{1/2}.
 - $-p_o =$ the proportion of cases with identical data
 - $-p_c$ = expected value for the proportion of cases where the data for is identical by chance

Methods (III)

- How to interpret K statistics (Landis 1977)?
- Value
 - negative
 - 0.00 0.20
 - 0.21 0.40
 - 0.41 0.60
 - 0.61 0.80
 - 0.81 1.00

Interpretation

- poor
- slight
- fair
- moderate

substantial

- almost perfect
- Heavy criticisms recently

Essential to know

- How data is collected in the primary data source?
 - Inclusion/exclusion criteria
 - Definitions, classifications, concepts...
- What affects the data collection:
 - Legislation
 - Care practices
 - Local applications
- Local circumstances

Methodologically sound epidemiological research

- Four principles by McLaughlin 2002:
 - The exposed population should be enumerated completely <u>without selection bias</u>.
 - The exposed population should be tracked <u>without loss to</u> <u>follow-up</u>.
 - The type, occurrence, and severity of health and medical outcomes should be evaluated, and their clinical/public health significance to be determined.
 - Appropriate <u>comparison groups</u> should be established.

Reference: McLaughlin JK: The need for population-based epidemiological studies in the United States. Journal of Long-term Effects of Medical Implants 12 (4): 251-253, 2002.

Problems related to register research

- The data is unavailable
 - primary health care, diseases and conditions not requiring a contact to health care system, self-rated health, opinions, experiences,...
- Data protection: are such studies possible in general?
- Ethically controversial topics:
 - abortion, miscarriage, infertility, malformations, psychiatric disorders, family studies, contact to relatives of a death patient, genetics...
- High data costs: Statistical offices, Central Population Register
- Data overload syndrome
 - Too much data, too little time...?
- Fishing:
 - Easy to find statistically significant results, if the data is large.

Major prerequisites for register linkage studies

- National data protection legislation which enables the use of administrative data in scientific research.
- Administrative data with good quality.
- Possibility to utilise various data sources by using data linkages.
- Good imagination and creativeness helps.
- Patience also sometimes needed!

Reijo Sund: Utilisation of Administrative Registers Using Scientific Knowledge Discovery. Intelligent Data Analysis 7:6, 501-519, 2003

Four questions:

- 1. Theory: Research and process schema
- 2. Theory: Understanding the problem / understanding the data
- 3. Practice: Hip fracture data as an example: do we understand the problem/data?
- 4. Practice: Hip fracture data as an example: do we understand the results and conclusions?

R. Sund / Utilisation of administrative registers using scientific knowledge discovery

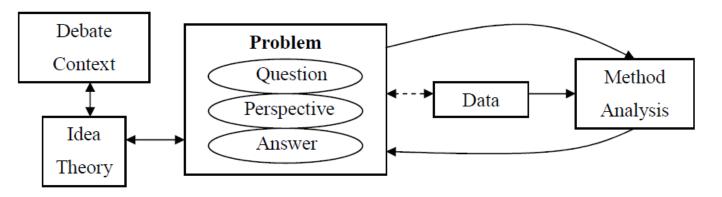


Fig. 1. Research process schema.

R. Sund / Utilisation of administrative registers using scientific knowledge discovery

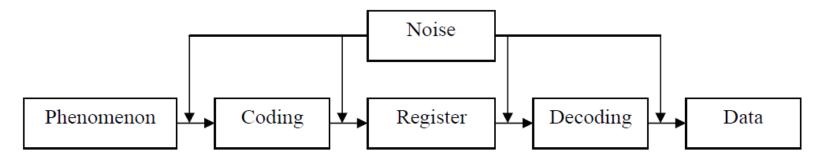


Fig. 3. Schematic diagram of information communication via administrative registers.

Problems related to register research

- The data is unavailable
 - primary health care, diseases and conditions not requiring a contact to health care system, self-rated health, opinions, experiences,...
- Data protection: are such studies possible in general?
- Ethically controversial topics:
 - abortion, miscarriage, infertility, malformations, psychiatric disorders, family studies, contact to relatives of a death patient, genetics...
- High data costs: Statistical offices, Central Population Register
- Data overload syndrome
 - Too much data, too little time...?
- Fishing:
 - Easy to find statistically significant results, if the data is large.

Major prerequisites for register linkage studies

- National data protection legislation which enables the use of administrative data in scientific research.
- Administrative data with good quality.
- Possibility to utilise various data sources by using data linkages.
- Good imagination and creativeness helps.
- Patience also sometimes needed!