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Sensitivity analysis is useful in assessing how robust an associa-
tion is to potential unmeasured or uncontrolled confounding.
This article introduces a new measure called the “E-value,” which
is related to the evidence for causality in observational studies
that are potentially subject to confounding. The E-value is de-
fined as the minimum strength of association, on the risk ratio
scale, that an unmeasured confounder would need to have with
both the treatment and the outcome to fully explain away a spe-
cific treatment–outcome association, conditional on the mea-
sured covariates. A large E-value implies that considerable un-
measured confounding would be needed to explain away an
effect estimate. A small E-value implies little unmeasured con-
founding would be needed to explain away an effect estimate.

The authors propose that in all observational studies intended to
produce evidence for causality, the E-value be reported or some
other sensitivity analysis be used. They suggest calculating the
E-value for both the observed association estimate (after adjust-
ments for measured confounders) and the limit of the confi-
dence interval closest to the null. If this were to become standard
practice, the ability of the scientific community to assess evi-
dence from observational studies would improve considerably,
and ultimately, science would be strengthened.

Ann Intern Med. 2017;167:268-274. doi:10.7326/M16-2607 Annals.org
For author affiliations, see end of text.
This article was published at Annals.org on 11 July 2017.

Much empirical research is concerned with estab-
lishing causation. It is well-known, however, that

with observational data, association (1–11) need not im-
ply causation (12–22). A central concern with observa-
tional data is bias by unmeasured or uncontrolled con-
founding, that is, that some third factor related to both
the treatment and outcome might explain their associ-
ation, with no true causal effect (12–22). With observa-
tional data, we can never be certain that efforts to
adjust for confounders or common causes are
adequate.

An important approach to evaluating evidence for
causation in the face of unmeasured confounding is
“sensitivity analysis” (or “bias analysis”) (14–22). Sensi-
tivity analysis considers how strong unmeasured con-
founding would have to be to explain away the associ-
ation, that is, how strongly the unmeasured confounder
would have to be associated with the treatment and
outcome for the treatment–outcome association not to
be causal.

In this tutorial, we discuss a sensitivity analysis tech-
nique that makes minimal assumptions, and we pro-
pose that observational studies start reporting the “E-
value,” a new measure related to evidence for causality.
The E-value represents the minimum strength of asso-
ciation, on the risk ratio scale, that an unmeasured con-
founder would need to have with both the treatment
and outcome to fully explain away a specific treatment–
outcome association, conditional on the measured co-
variates. Implementing these sensitivity analysis tech-
niques and obtaining E-values are relatively simple. If
reporting E-values for sensitivity analysis were standard
practice, our ability to assess evidence from observa-

tional studies would improve and science would be
strengthened.

EXAMPLE
As a motivating example, several observational

studies have reported associations between breast-
feeding and various infant and maternal health out-
comes. A common concern is that the effects of breast-
feeding may be confounded by smoking behavior or
by socioeconomic status. In a population-based case–
control study, Victora and colleagues (23) examined as-
sociations between breastfeeding and infant death by
respiratory infection. After adjusting for age, birth-
weight, social status, maternal education, and family in-
come, the authors found that infants fed with formula
only were 3.9 (95% CI, 1.8 to 8.7) times more likely to
die of respiratory infections than those who were exclu-
sively breastfed. The investigators controlled for mark-
ers of socioeconomic status but not for smoking, and
smoking may be associated with less breastfeeding as
well as greater risk for respiratory death.

SENSITIVITY ANALYSIS FOR UNMEASURED

CONFOUNDING
Sensitivity analysis considers how strongly an un-

measured confounder would have to be related to the
treatment and outcome to explain away the observed
association. Several sensitivity analysis techniques have
been developed for different statistical models (14–22,
24–41). Often, these techniques involve specifying sev-
eral parameters corresponding to the strength of the
effect of the unmeasured confounders on the treatment
and on the outcome and then using analytic formulas
to determine what the true effect of the treatment on
the outcome would be if an unmeasured confounder of
the specified strength were present. Such techniques
are helpful in determining the strength of the evidence
for causality.
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These techniques sometimes are criticized for be-
ing too subjective—that is, regardless of the estimate
obtained, investigators could choose the sensitivity pa-
rameters that make the result seem robust to con-
founding. Another criticism is that sensitivity analysis
techniques themselves make simplifying assumptions
about the unmeasured confounder. Such assumptions
often stipulate that the unmeasured confounder is bi-
nary (22, 24, 26) or that only 1 unmeasured confounder
exists (24–28), or that there is no interaction between
the effects of the unmeasured confounder and of the
treatment on the outcome (25–28). The criticisms then
assert that these assumptions are needed to assess the
effect of assumptions so that, in fact, the approach is
not very useful after all.

These criticisms are not unreasonable; however, on
the basis of recent developments, addressing them is
now possible (37). Specifically, some techniques make
no assumptions about the underlying structure of un-
measured confounders and still allow conclusions
about the strength the unmeasured confounders must
have to explain away an observed association (37). We
begin by describing such a technique and then intro-
duce the new E-value measure.

Suppose that an observational study controls for
several covariates thought to be confounders of the
treatment–outcome association. After adjustment, sup-
pose that the estimated relative risk equals RR. We may,
however, still be concerned that this estimate is subject
to unmeasured confounding. Suppose that all con-
founding would be removed if the study had controlled
for 1 or more unmeasured confounders U, along with
the observed covariates. The sensitivity analysis tech-
nique requires 2 parameters to be specified. One cor-
responds to the strength of the association between
the unmeasured confounders U and the outcome D;
the other corresponds to the strength of the association
between the treatment or exposure E and the unmea-
sured confounders. Once these parameters are speci-
fied, we can calculate the extent to which such a set of
unmeasured confounders could alter the observed rel-
ative risk. We let B denote the largest factor by which
the observed relative risk could be altered by unmea-
sured confounders of a particular strength.

In practice, we do not know the strengths of the
unmeasured confounder associations, but we could, in
principle, specify many different values and determine
how the estimate is affected by each setting. Let RRUD

denote the maximum risk ratio for the outcome com-
paring any 2 categories of the unmeasured confound-
ers, within either treatment group, conditional on the
observed covariates. Let RREU denote the maximum risk
ratio for any specific level of the unmeasured con-
founders comparing those with and without treatment,
with adjustment already made for the measured cova-
riates. Thus, RRUD captures how important the unmea-
sured confounder is for the outcome, and RREU cap-
tures how imbalanced the treatment groups are in the
unmeasured confounder U. For example, if 40% of non-
breastfeeding mothers smoked, as compared with 20%

of breastfeeding mothers, we would have RREU = 2. The
relationships are shown in Figure 1.

Once these variables are specified, the maximum
relative amount by which such unmeasured confound-
ing could reduce an observed risk ratio is given by the
following formula (37):

B � RRUDRREU/�RRUD � RREU � 1�.

To obtain the maximum amount this set of unmea-
sured confounders could alter an observed risk ratio
RR, one simply divides the observed risk ratio by the
bias factor B (37). In fact, one also may divide the limits
of the CI by the bias factor B to obtain the maximum the
unmeasured confounder could move the CI toward the
null (37). The formula applies when the observed risk
ratio RR is greater than 1. If the observed risk ratio is
less than 1, then one multiplies by this bias factor rather
than dividing by it.

We illustrate this approach with the association be-
tween maternal breastfeeding and respiratory death

Key Summary Points

Motivation: Observational studies that attempt to assess
causality between a treatment and an outcome may be
subject to unmeasured confounding.

Rationale: Sensitivity analysis can assess how strong an
unmeasured confounder would have to be to explain
away an observed treatment–outcome relationship. A
sensitivity analysis technique that is easy to use, present,
and interpret, and does not itself make strong assump-
tions, is desirable.

Definition of E-value: The E-value is the minimum
strength of association, on the risk ratio scale, that an
unmeasured confounder would need to have with both
the treatment and outcome, conditional on the mea-
sured covariates, to fully explain away a specific
treatment–outcome association.

Calculation: The E-value for an estimate, and for the
limit of a 95% CI closest to the null, can be calculated in
a straightforward way for risk ratios (Table 1) and for
other measures (Table 2).

Conclusions: The E-value allows an investigator to make
statements of the following form: “The observed risk
ratio of 3.9 could be explained away by an unmeasured
confounder that was associated with both the treatment
and the outcome by a risk ratio of 7.2-fold each, above
and beyond the measured confounders, but weaker
confounding could not do so; the confidence interval
could be moved to include the null by an unmeasured
confounder that was associated with both the treatment
and the outcome by a risk ratio of 3.0-fold each, above
and beyond the measured confounders, but weaker
confounding could not do so.”
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from the study by Victora and colleagues (23), in which
RR = 3.9 (CI, 1.8 to 8.7) for infants formula-fed rather
than breastfed. Again, we might be worried that this
estimate is confounded by smoking status. Suppose
that the maximum ratio by which smoking could in-
crease respiratory death is RRUD = 4 and the maximum
by which smoking differed by breastfeeding status was
RREU = 2. Our bias factor is then B = 4 × 2/(4 + 2 � 1) =
1.6. The most that unmeasured confounding could al-
ter the effect estimate is obtained by dividing the ob-
served risk ratio and its CI by 1.6: RR = 3.9/1.6 = 2.43
(CI, 1.1 to 5.4). Unmeasured confounding of this
strength would not suffice to explain away the effect
estimate.

One might object to a sensitivity analysis such as
this because of the assumptions of specifying the
strength of the confounding associations, RRUD and
RREU, and furthermore because an investigator could
simply choose values of RRUD and RREU that make the
estimate seem robust. A potential remedy is to provide
a large table with different values of RRUD and RREU,
including some that are large, to give readers and re-
searchers a sense of how sensitive the conclusions are
to potential unmeasured confounders (37). One also
could plot all the values of RRUD and RREU that suffice to
explain away, or reverse, the association, as in Figure 2
for the estimate of RR = 3.9 from the study by Victora
and colleagues (23). An alternative, and arguably sim-
pler, approach is to report what we call the E-value, as
described below.

THE E-VALUE FOR SENSITIVITY ANALYSIS
The E-value is the minimum strength of association,

on the risk ratio scale, that an unmeasured confounder
would need to have with both the treatment and out-
come, conditional on the measured covariates, to ex-
plain away a treatment–outcome association. Rather

than focusing on whether confounding of a specified
strength would or would not suffice to explain away an
effect estimate, as above, the E-value focuses on the
magnitude of the confounder associations that could
produce confounding bias equal to the observed
treatment–outcome association. The investigator does
not choose the variables but merely reports how
strongly an unmeasured confounder must be related to
the treatment and outcome to explain away an effect
estimate; readers or other researchers may then assess
whether the confounder associations of that magnitude
are plausible.

E-value calculations are straightforward. For an ob-
served risk ratio of RR:

E-value � RR � sqrt�RR � �RR � 1��.

The proof appears elsewhere (37). The formula ap-
plies to a risk ratio greater than 1; for a risk ratio less
than 1, one first takes the inverse of the observed risk
ratio and then applies the formula. Thus, for the risk
ratio RR = 3.9, one may obtain the E-value as follows:

E-value � 3.9 � sqrt�3.9 � �3.9 � 1�� � 7.26.

From this E-value, we then may make statements
such as “The observed risk ratio of 3.9 could be ex-

Figure 1. Unmeasured confounder of the treatment–
outcome relationship.

Unmeasured
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Treatment Outcome
Measured
covariates

The maximum risk ratio for the outcome comparing any 2 categories
of the unmeasured confounders, with adjustment already made for
the measured covariates, is denoted in the diagram by RRUD. The
maximum risk ratio for any specific level of the unmeasured confound-
ers comparing those with and without treatment, with adjustment al-
ready made for the measured covariates, is denoted in the diagram by
RREU. The measured covariates are allowed to affect the unmeasured
confounders, and vice versa.

Figure 2. Value of the joint minimum strength of
association on the risk ratio scale that an unmeasured
confounder must have with the treatment and outcome to
fully explain away an observed treatment–outcome risk
ratio of RR = 3.9, as in the study by Victora and colleagues.
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The E-value essentially sets the 2 parameters, RRUD and RREU, equal to
each other to determine the required minimum for both. The E-value
for Victora and colleagues' (23) estimate corresponds to the point
(7.26, 7.26). RREU = maximum risk ratio for any specific level of the
unmeasured confounders comparing those with and without treat-
ment, with adjustment already made for the measured covariates;
RRUD = maximum risk ratio for the outcome comparing any 2 cate-
gories of the unmeasured confounders, with adjustment already
made for the measured covariates.
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plained away by an unmeasured confounder that was
associated with both the treatment and the outcome by
a risk ratio of 7.2-fold each, above and beyond the
measured confounders, but weaker confounding could
not do so.” The strength of an unmeasured confounder
here is understood to be the maximum bias that could be
generated in the bias formula for B given the confounder
associations. Relatively strong confounding associations
would be needed to completely explain away the ob-
served treatment–outcome association of RR = 3.9.

The E-value is a continuous measure of an associa-
tion's robustness to potential uncontrolled confound-
ers. The lowest possible E-value is 1 (that is, no unmea-
sured confounding is needed to explain away the
observed association). The higher the E-value, the
stronger the confounder associations must be to ex-
plain away the effect. The E-value essentially sets the 2
parameters, RRUD and RREU, equal to each other to de-
termine the required minimum for both. The E-value for
Victora and colleagues' estimate corresponds to the
point (7.26, 7.26) in Figure 2. If 1 of the 2 parameters is
smaller than the E-value, then the other must be larger.
Sensitivity analysis makes clear quantitatively why Brad-
ford Hill's criterion of “strength of association” (12) is
important in establishing that a given association is, in
fact, causal.

In practice, of course, we care not only about the
estimate itself but also about the statistical uncertainty
of the estimate, such as the CI for the estimate. For this
reason, also reporting the E-value for the limit of the CI
closest to the null is good practice. If the CI includes the
null of a risk ratio of 1, then the E-value for the CI is
simply 1 (because no confounding is needed to move
the CI to include 1). Otherwise, one simply calculates,
using the aforementioned formula, the E-value for the
limit of the CI closest to the null. In the respiratory death
example, the E-value for the lower limit of the CI (1.8) is
obtained by applying the aforementioned formula, which
produces an E-value for the confidence limit of 3.0.

An unmeasured confounder associated with respi-
ratory death and breastfeeding by a risk ratio of 3.0-
fold each could explain away the lower confidence
limit, but weaker confounding could not. The evidence for
causality from the E-value thus looks reasonably strong,
because substantial unmeasured confounding would be
needed to reduce the observed association or its CI to
null.

Table 1 summarizes how to calculate E-values. For
risk ratios, E-value calculations are straightforward. Ta-
ble 2 summarizes calculations for other effect mea-
sures. Some further worked examples for other effect
measures are included in the Supplement (available at
Annals.org).

The E-value interpretation, however, does depend
on context, particularly on the measured covariates for
which adjustment has been made. The E-value is the
minimum strength of both the confounder associations
that must be present, above and beyond the measured
covariates, for an unmeasured confounder to explain
away an association. Thus, for example, if 2 studies on
breastfeeding had an E-value of 2.5 but 1 study had

controlled for several indicators of socioeconomic sta-
tus (educational attainment, income, occupation, hom-
eownership, wealth) and the other had controlled for
only a single binary marker of college education, then
the former study would be more robust to unmeasured
confounding, because in that study, an unmeasured
confounder would have to be associated with both
breastfeeding and the outcome by a risk ratio of 2.5-
fold each, through pathways independent of several
socioeconomic markers rather than just 1 of them.

The E-value results also do not guarantee that if a
confounder with parameters of a particular strength ex-
isted, then it necessarily would explain away the effect,
only that it is possible to construct scenarios in which it
could (37). A rare unmeasured confounder would not
bias an estimate as much. One of the strengths of the
E-value approach is that it does not require one to
specify the prevalence of unmeasured confounders or
make assumptions about their nature. However, infor-
mation about the distribution of the unmeasured con-
founder, when available, may be helpful in sensitivity
analysis, and techniques are available to use such infor-
mation (21, 25, 29). These techniques, however, make
additional assumptions beyond the E-value approach.

The E-value also should be interpreted along with
other strengths and weaknesses of the study and de-
sign. Unmeasured confounding is not the only source
of potential bias in observational studies; measurement
error, selection bias, and missing data also must be con-
sidered carefully in evaluating evidence. Other points of
interpretation are discussed in Table 3. The E-value is a
useful measure but must be interpreted in context.

FURTHER EXAMPLES
To illustrate the E-value's usefulness and interpre-

tation, we consider the potential effects of breastfeed-
ing on other childhood and maternal outcomes. A
study by the Agency for Healthcare Research and Qual-
ity (42) reported the association between breastfeeding
and childhood leukemia as RR = 0.80 (CI, 0.71 to 0.91).
The P value less than 0.001 suggests strong evidence
that breastfeeding and childhood leukemia are associ-
ated. However, is this association causal? We can calcu-
late the E-value by first taking the inverse of the risk

Table 1. Calculating the E-Value for Risk Ratios

Estimate or CI, by
Direction of Risk Ratio

Computation of the E-Value

RR >1
Estimate E-value = RR + sqrt{RR × (RR − 1)}
CI If LL ≤ 1, then E-value = 1

If LL > 1, then E-value = LL + sqrt{LL × (LL − 1)}

RR <1
Estimate Let RR* = 1/RR

E-value = RR* + sqrt{RR* × (RR* − 1)}
CI If UL ≥ 1, then E-value = 1

If UL < 1, then let UL* = 1/UL and E-value =
UL* + sqrt{UL* × (UL* − 1)}

LL = lower limit of the CI; RR = risk ratio; RR* = inverse of RR; UL =
upper limit of the CI; UL* = inverse of UL.
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ratio (because it is protective; see Table 1) and then
applying the E-value formula that produces E = 1.8 for
the estimate and E = 1.4 for the upper confidence limit.
In contrast to the respiratory death estimate, compara-
tively weaker confounder associations could explain
away the observed association and even weaker asso-
ciations could move the CI to include a risk ratio of 1.
An unmeasured confounder associated with childhood
leukemia and breastfeeding by a risk ratio of 1.4-fold
does not seem implausible. Breastfeeding might pro-
tect against leukemia, but the evidence for causality
from the estimate is not nearly as strong as it was for
respiratory death.

As another example, a study by Moorman and col-
leagues (43) indicated that in premenopausal women
who breastfed for 6 to 12 months, the odds of devel-
oping ovarian cancer were 0.5 (CI, 0.3 to 0.8) times
lower than in women who did not breastfeed; the anal-
ysis did not control for socioeconomic status. Here, the
E-value is E = 3.4 for the estimate and E = 1.8 for the CI.

In this case, the estimate seems moderately robust, but
substantial confounder associations with breastfeeding
and ovarian cancer could potentially move the CI to in-
clude 1. This perhaps constitutes some evidence for cau-
sality but is intermediate between the E-value obtained
for respiratory death and the one for childhood leukemia.

Of interest, for ovarian cancer, the P value of 0.006
calculated from the CI, although still small, is not as
extreme as it was for childhood leukemia as the out-
come. However, for ovarian cancer, the E-value was
more extreme than for childhood leukemia. Thus, for
childhood leukemia, the evidence for association was
stronger than it was for maternal ovarian cancer, but for
maternal ovarian cancer, the evidence that the associa-
tion was at least partially causal arguably was stronger
than it was for childhood leukemia. As described in Ta-
ble 3, the evidence provided by the P value and that
provided by the E-value are distinct; the measures re-
late to different concepts; the measures may diverge;
the P value is more dependent than the E-value on

Table 2. E-Values for Other Effect Measures

Effect Measure Computation of Approximate E-Value

OR or HR for rare outcomes When the outcome is relatively rare (e.g., <15%) by the end of follow-up, the E-value formula in Table 1 may be
used (37). In a case–control study, the outcome only needs to be rare in the underlying population, not in the
case–control study.

Rate ratio for count and continuous
outcomes

For ratio measures for count outcomes (or nonnegative continuous outcomes), the E-value may be found by replacing
the risk ratio with the rate ratio (or the ratio of expected values) in the E-value formula in Table 1 (37).

OR for common outcomes When the outcome is common (>15% at the end of follow-up), an approximate E-value may be obtained by replacing
the risk ratio with the square root of the OR (45), i.e., RR ≈ sqrt(OR), in the E-value formula in Table 1.

HR for common outcomes When the outcome is common (>15% at the end of follow-up), an approximate E-value may be obtained (45) by
applying the approximation RR ≈ (1 − 0.5sqrt(HR))/(1 − 0.5sqrt(1/HR)) in the E-value formula in Table 1.

Difference in continuous outcomes With standardized effect sizes d (mean of the outcome variable divided by the SD of the outcome) and an SE for this
standardized effect size sd, an approximate E-value may be obtained (45–47) by applying the approximation RR ≈
exp(0.91 × d) in the E-value formula. An approximate CI for the risk ratio may be found by using the approximation
(exp{0.91 × d – 1.78 × sd}, exp{0.91 × d + 1.78 × sd}). This approach relies on additional assumptions and
approximations. Other sensitivity analysis techniques have been developed for this setting (27–29), but they
generally require additional assumptions, and the variables do not necessarily have a corresponding E-value.

Risk difference If the adjusted risks for the treated and untreated are p1 and p0, then the E-value may be obtained by replacing the
risk ratio with p1/p0 in the E-value formula. The E-value for the CI on a risk difference scale is more complex, and
software to obtain this is described in the Supplement (available at Annals.org). Alternatively, if the outcome
probabilities p1 and p0 are not very small or very large (e.g., if they are between 0.2 and 0.8), then the approximate
approach for differences in continuous outcomes given previously may be used. Other sensitivity analysis
techniques have been developed for this setting (27–29) but generally require additional assumptions and do not
provide a corresponding E-value.

HR = hazard ratio; OR = odds ratio; RR = risk ratio.

Table 3. Issues of Interpretation of the E-Value

Issue Interpretation

Likely effect sizes The E-value should be interpreted in the context of the effect sizes that an unmeasured confounder is likely to have
with respect to the outcome and treatment. In the context of biomedical and social sciences research, effect
sizes ≥2- or 3-fold occasionally occur but are not particularly common; a variable that affects both treatment and
outcome each by 2- or 3-fold would likely be even less common. For purposes of comparison, calculating the
analogous E-value for each of the measured covariates if they had been omitted may be helpful.

E-values and sensitivity analysis The E-value for the respiratory death example was 7.2. In the formula for the bias factor B, a confounder that was
associated with the respiratory death by less than 7.2-fold might explain away the effect estimate but would have
to be associated with the treatment by a risk ratio more than 7.2-fold. Values of the sensitivity analysis variables
with a less extreme confounder–outcome association will require a more extreme treatment–confounder
association, and vice versa.

Sample size, E-values, and P values A large study with a precisely estimated association often has a very small P value; the P value may be made
arbitrarily small by increasing the sample size. However, if the effect size is small, then the E-value will be small.
The E-value depends on the magnitude of the association; it cannot be made arbitrarily large simply by
increasing the sample size. The E-value for the CI does depend on the sample size. However, as the sample size
increases, the E-value for the CI does not get arbitrarily large; it is bounded by the strength of the association
(the limit sometimes is referred to in other contexts as the “design sensitivity” [17, 18]). A large sample size may
give a small P value; a large effect size will give a large E-value.
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sample size; and both measures arguably should be
reported routinely in observational studies.

The E-value can assess the robustness of an asso-
ciation to potential unmeasured confounders and, in
some cases, might provide strong evidence to support
causality. As with the P value, however, the E-value can-
not be used analogously to establish a null association
definitively. The E-value may be used to conclude that
the evidence for causality from a study is weak, but the
absence of evidence for an effect is not the same as
evidence of no effect. Nevertheless, as discussed in the
Supplement, E-values still may be used to assess how
much confounding would be required to move a near-
null association to clinically meaningful levels, or even
to reverse the direction of the association. In fact, the
E-value approach may be used to assess the minimum
strength of association that an unmeasured confounder
would need to have with both the treatment and out-
come to move the observed estimate to any other
value. The E-value need not be used only to assess
overall evidence for causality but also may be used sim-
ply to determine how unmeasured confounders might
change adjusted associations. The Supplement dis-
cusses the use of E-values for these other purposes.

DISCUSSION
We propose that all observational studies that as-

sess causality (that is, are not strictly about description
or predictive or prognostic modeling) report the E-
value for the estimate and the CI or use some other
sensitivity analysis technique. Journals should strongly
encourage such reporting. An investigator may use text
such as we have outlined in our examples (see the Key
Summary Points) as succinct but highly informative state-
ments about evidence of causality. E-values also may
be reported for any estimate discussed in a systematic
review.

Interpretative practices must change. The P value
sometimes is used as the central measure of evidence
for causality in randomized trials. Although potentially
subject to misuse and misinterpretation (1, 5–12), the P
value may be informative as a continuous measure of
evidence as to whether an association is present. With
observational studies, however, association does not
imply causation, and relying on the P value is wholly
inadequate. Unmeasured confounding is often the cen-
tral challenge in assessing evidence for causality in ob-
servational research, and E-values assess robustness to
such unmeasured confounding, thereby supplement-
ing P values.

The E-value, of course, does not address all issues
of bias. It does not assess measurement error or selec-
tion bias, nor does it address selective reporting of re-
sults (such as when multiple tests are done, and only
significant ones are reported).

A possible objection might be, “It was already dif-
ficult enough to achieve a P value below some thresh-
old; are you now going to require a large E-value as
well?” We do not propose any threshold cutoff for the
E-value. Enough mischief has been done by the arbi-

trary 0.05 P-value cutoff (1, 5–12). The E-value, like the P
value, is a continuous measure. Publication decisions
should never rest simply on the magnitude of measures
such as the P value or E-value.

Moreover, it is possible to obtain a very precise
estimate of a relatively small effect from a large, well-
designed observational study that has extensive cova-
riate control with a very narrow CI. If the association is
not strong, the E-value will be quite small. The robust-
ness to unmeasured confounding, as well as the evi-
dence for causality, thus might be weak. However, this
result does not mean that no effect exists. Moreover, it
does not mean that the study should not be published.
The study may be the best we can do with observa-
tional data; therefore, knowing this fact would be im-
portant and worth publishing. As noted earlier, a small
E-value also does not mean that there is evidence for
no effect; it implies only that the evidence for an effect
is itself weak. However, weak evidence for an effect
does not imply evidence that the effect is absent.

E-values likewise may be computed at the study
design stage for hypothesized estimates when consid-
eration is given to whether, and to what extent, covari-
ates will be available to adequately control for con-
founding. A small E-value for a hypothesized estimate
may indicate that one should not proceed with an ob-
servational study but should wait until resources are ad-
equate to carry out a randomized trial.

Reporting and accurate assessment of evidence for
causality are important; the E-value assists with these
tasks. Observational research is sometimes criticized on
the grounds that its results constantly are being over-
turned (44). This state of affairs arises in part from over-
reliance on the P value and inadequate assessment of
robustness to biases, such as unmeasured or uncon-
trolled confounding. Again, the E-value would help
with this task. Introduction of the E-value may some-
times make publication more difficult and may be sub-
ject to editorial abuse. However, the end of science is
not publication but rather a collective attempt to arrive,
as best as possible, at the truth. Our hope is that the
E-value will be of use in this regard. We believe its use
should become routine.
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