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Abstract. The volume of data being produced for administrative purposes is increasing rapidly. Data must be analysed in order
to extract useful information to support decision making. The demand for evidence-based information means that the analysis
must be conducted according to the principles of scientific research. Unfortunately, the massive second-hand data sets seem not
to fit very well into the traditional methodological paradigm. A secondary data source imposes limitations on the formulation
of a problem and concepts, because the measurement can only be based on existing data. The aim of this paper is to present a
methodological framework for the utilisation of administrative registers in the creation of scientifically valid information. This
is done by discussing fruitful methodological aspects encountered in the practical knowledge-discovery process. The ideas
presented originate from many different fields, such as statistics, data mining and sociology. The emphasis lies on understanding
connections between problem, data and analysis in the case of massive secondary administrative data sources.
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1. Introduction

Data have been produced for hundreds of years. The reasons for such production were originally
administrative in nature. There was a need for systematically collected numerical facts on a particular
subject. Later, a belief in the advantages of quantitative information accompanied by advances in
statistical techniques led to the birth of a widely used methodological paradigm for scientific research.
Even more recently, advances in information technology have made it possible to more effectively collect
and store larger and larger data sets. Administrative information systems have been at the forefront of
data gathering, since there have been a growing demand for evidence-based information to support
decision making and other administrative purposes. In many cases, however, raw data as such are of little
value. Data must be analysed in order to convert them to useful information. Unfortunately data-driven
analysis and the massive size of data sets seem not to fit very well into the traditional methodological
paradigm.

A traditional way of creating scientifically valid information is to design and carry out a scientific
study, in which data production, analysis and reporting are all strictly problem-specific. Data represent
tailored measurements of observational reality that are needed in problem solving. Analysis is then used
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to reveal ‘how things work’ in empirical data. By interpreting these empirical results in the theoretical
context and discussing relevant limitations, it is hopefully possible to create a sophisticated answer to a
problem in such a way that it can be evaluated by the scientific community.

The most important challenge for the traditional paradigm is the nature of data. If it is not possible to
produce tailored data according to the problem in question, the whole problem-solving process becomes
more restricted. The secondary data sources utilised impose limitations on possibilities for technical
analysis. Moreover, the formulation of a problem and the associated concepts inevitably becomes
opportunistic, because the measurement can only be based on existing data [6]. For some researchers,
even the validity of data is suspect if they were not produced for the specific purpose for which they
are used. Such criticism is not necessarily based on evidence concerning the quality of the information
contained by the data but rather on philosophical beliefs regarding the connection between data origin
and data quality [35].

In addition, the growing size of data sets has raised some issues that must be dealt with in a different
way: data exploration and description plays a more general role than it does in the case of small data
sets; efficient algorithms (and computers) are needed in analyses; the unfeasibility of manual analysis
results in separation between the data and the analyst; the manual management of all errors in the data
is not possible; and the chance occurrence of patterns is more likely in large data sets. In addition, some
databases include the whole population and not just a sample, which changes the nature of the whole
statistical inference [13].

In other words, in the analysis of secondary data, the problem must be defined under preconditions
arising from the data. Moreover, massive data sets are usually so overwhelming that their processing and
analysis is difficult (‘data overload syndrome’). It may also be tempting to screen the data for significant
associations without having an adequate prior hypothesis (‘snooping/dredging/fishing’). Rather than
tackling too much on what can and can not be done, analysis should achieve an appropriate compromise
between the practical problem and the data. This kind of activity has been characterised as ‘greater
statistics’, which tends to be inclusive, eclectic with respect to methodology, closely associated with
other disciplines and also practised by many non-statisticians [3]. Moreover, the larger the data sets are,
the more important the general-science and collaboration aspects of the analysis process seem to become
relative to the ‘statistical’ aspects.

Since statistical research has traditionally focused on probabilistic inference based on mathematics, it
has not been able to offer very much concrete help in these different circumstances. The practical need
for information has led to the development of alternative ways of analysing data, such as data mining [9].
However, these strategies for analysing data have much in common, and formal statistical expertise also
provides an excellent basis for the understanding and evaluation of these ‘new’ ideas. Statisticians ought
to take advantage of the situation, get involved in interdisciplinary activities, learn from the experience,
expand their own minds – and thereby their field – and act as catalysts for the dissemination of insights
and methodologies [15].

1.1. The aim of the paper

The aim of this paper is to present a methodological framework for the utilisation of administrative
registers in the creation of scientifically valid information. This is done by discussing the fundamental
methodological issues encountered in the practical knowledge discovery process. The ideas presented
originate from many different fields, such as statistics, data mining and sociology. The paper emphasises
a broader understanding of connections between problem, data and analysis in the case of massive
secondary data sources.
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Fig. 1. Research process schema.

The development of this paper is heavily influenced by the context of health services research, a field
in which the most valuable official data sets are individual-based. In these circumstances, the histories
of individuals recorded in administrative data are the most general starting point for any analysis – and
a fruitful starting point for this paper, too. A practical real-world example – used to demonstrate the
research made by following the guidelines presented in the paper – is also taken from the context of
health services research.

2. The scientific knowledge-discovery process

The ultimate goal in all research is – or at least should be – to search for appropriate answers to
relevant problems. To find sensible and scientifically valid solutions requires not only a knowledge of
the phenomena being investigated but also the capacity to think originally about the nature of inference
and the process of conceptualisation. The whole problem-solving process must be conducted in a
systematic way, using appropriate methods. Even though it is not in general possible to split research
process completely into distinct phases, certain common phases are encountered repeatedly and even
simultaneously during the research process. The process does not proceed in such a way that one
phase is completed first, after which one moves on to the next. Findings made during the research
process inevitably have effects on the final conclusions, since these preliminary findings provide a
deeper understanding of the phenomenon and data in question.

One sophisticated characterisation of complex problem-solving, is known as a knowledge-discovery
process (see e.g. [2,4,8]). However, despite the practical usefulness of a process description of this kind,
some critical issues concerning the scientific nature of the research process are not mentioned at all.

To see what is actually happening in the research process, it is helpful to place it in a wider context. For
this purpose, an alternative schema for a research process is presented in Fig. 1. The interactive phases
related to this schema are: understanding the phenomenon, understanding the problem, understanding
data, data preprocessing, modelling, evaluation and reporting.

Research is conducted in order to obtain an answer to some problem. The researcher has to choose the
perspective from which solving the problem is approached, since research requires rigorous communi-
cation and careful definitions of concepts related to a phenomenon of interest. However, all researchers
have some more or less latent foreknowledge, which provides directions and criteria for understanding
the world and also guides understanding gained and interpretations made during the research process.
The researcher must be aware that these choices and interpretations are his or her ideologically and
historically dependent decisions. The choice of perspective and conceptions may even prevent one from
seeing (or enable one to see) something important or interesting.

In order to move from the theoretical level to the empirical level, the researcher must operationalise
the research frame in such a way that it is possible to produce useful information from the phenomenon
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and thus create some answers to the problem. This kind of operationalisation is fundamental to the
plausibility of research. This is the stage at which the research defines the point of view from which the
phenomenon and concepts are examined.

Data represent the empirical world in research. Observed information can not cover all details which
are relevant to the phenomenon of interest. The observation and measurement must also be dealt with
in a conceptual context. This means that some compromises must be made between the exactness of
measurement and the ambiguity of observation. Definitions can not replace the empirical information, but
definitions affect the organisation of information and the decisions based on such information. From this
point of view, it is easy to argue that data should be produced strictly according to the research problem.
That is not the case with secondary data sources, such as administrative registers, since secondary data
are originally produced for some other purposes. The available data and the conceptual definitions used
in their production are not necessarily compatible with the research problem at hand. As an extreme
example, imagine that your observational world is all that you see, hear, smell and feel. Would you
trade your observational world for an old black-and-white photo, if you could trade it for a high-quality
three-dimensional digital image with full colour scale, including infrared?

All in all, the researcher must decide what to observe, how to conceptualise variables, what kind of
operationalisation to make and how to acquire appropriate data. The same freedom also applies to the
choice of analysing strategy, interpretation of the results and discussion of alternative interpretations.
Therefore it is important to reflect upon decisions made during the research process. Every scientific
explanation is valid only in so far as the investigator can provide a rationale for what has been done. At
each stage of the research, decisions and arguments must not rest on the uncritical or automatic use of
established techniques but on a set of logical decisions which must be taken on theoretical grounds with
full consciousness of what is being done. Results must be justified. In the example above, one obvious
question to be answered is: Why was that particular black-and-white photo chosen? In this example,
ideology may be viewed as the position of and lighting for the camera, and historical dependency as the
moment of taking the picture in question.

Since in the case of administrative registers the data typically have certain common properties, it is
possible to make some suggestions of which it is useful to be aware if data originating from such a source
are to be utilised. The next section briefly describes a few ideas that have been found very worthwhile
in practice. In the research process these ideas may be seen as aspects of the following three phases:
understanding the problem, understanding data, and data preprocessing.

2.1. Understanding the problem

Time is an essential factor in many problem domains. For example, disease processes evolve in time,
and patient records give the history of patients. In research on such dynamic phenomena, interest very
often focuses on the sequences of events which occur in time and reflect changes in research objects. A
good example is an employment career, which can be regarded as consisting of the sequences and timing
of the various jobs and of their association with other events, such as changes in marital status and place
of residence. In fact, the importance of the longitudinal event history approach has long been recognised
in many areas, especially in the social sciences, econometrics and medical research (see e.g. [5,19,34]).

2.1.1. Operationalisation
For the purposes of problem solving, the problem has to be ‘matched’ against the correspondingdomain

knowledge and data. This can be done by characterising the important properties of the phenomenon
carefully, i.e. by operationalising it as a system. A system is defined as a ‘group of things or parts
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Fig. 2. A system shown as a directed graph.

working together or connected in some way so as to form a whole’. This definition of a system requires
that the concepts, objects and restrictions related to the system be adequately described.

In the case of event histories, a common approach to characterising the phenomenon is to categorise
events in such a way that they describe transitions across a set of discrete states in time. In the simplest
case only one qualitative change is possible – for example, the transition from the state ‘alive’ to the
state ‘dead’. However, in many cases one transition can not describe the dynamics of a phenomenon in
a realistic way. For example, the slow development of a disease which finally results in the state ‘death’,
can not be modelled accurately using only the time elapsing between the first diagnosis and death.

If the system is constructed in a reasonable way, the individuals’ event histories can be regarded as
‘paths’ through the system. Pictorially the system can be presented as a directed graph whose nodes and
edges have characteristics which describe the properties of possible states and transitions in a system
(Fig. 2).

This kind of presentation can be criticised as simplistic or even confusing, since it may seem that
nothing happens to an individual as long as he or she remains in the same state. On the other hand, it
has been found that this kind of formalisation of a problem is easily understandable even for technical
outsiders and that it thus provides a common language for the experts from different fields which is
required for effective co-operation between members of a research group.

As a matter of fact, the presentation technique described above does not restrict the number of possible
states. If it seems too unrealistic to assume that nothing happens during a stay in a state or that stays
in the same state are not comparable, it is not a problem to split a state into a greater number of more
specific states. In general there is no limit to this kind of hierarchical splitting. The choice of an
appropriate degree of hierarchical structure is a good example of a fundamental decision on how to reach
a compromise between exactness of measurement, ambiguity of observation and – most importantly –
the practical needs of the problem-solving process in question.

2.2. Understanding data

In register-based analyses, the data themselves impose restrictions on the whole problem-solving task.
Such data are known as secondary data, in contrast to the primary data obtained by the investigator through
direct observation or interviewing. The use of secondary data raises particular problems associated with
the need to take account of the process by which the data were compiled. In general, data must have a
form appropriate for storage and analysis purposes, and in addition for intuitive interpretation.
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Fig. 3. Schematic diagram of information communication via administrative registers.

2.2.1. The nature of data
If we apply the traditional Shannon’s communication model in the context of administrative registers,

the transmission of information in register utilisation can be regarded as having a structure such as that
presented in Fig. 3 (cf. [31]).

The main idea is that some parts of the phenomenon of interest are observed and coded to signal, which
is then transmitted using a possibly noisy channel into a database and then decoded in order to obtain
proper data concerning the phenomenon. Even though this is a very simple and technical representation
of communication, it seems to contain the essential elements needed in the common-sense understanding
of secondary data. In other words, it is assumed that there exists some phenomenon which can be
observed. Since it is impossible to completely observe all details or make exact measurements, some
kind of coding is used to describe things. This coded signal is then stored in a database. The noise can be
interpreted as an explanation for measurement compromises, possible inconsistencies and coding errors,
and coding practices existing in the stored signal. When this signal is to be utilised, it must be decoded
into understandable data, i.e. into a form which tells us something about the phenomenon. This phase is
also subject to noise caused by incompatibility of choices and interpretations made by the data producer
and the data user.

In other words, there are many problematic preconditions in the case of administrative data. Most
importantly, the limitations of data are determined by the choices made by the producer of the data:
easily available data are also easier to collect; data are produced using fixed categorisations and may be
dependent on producers’ interpretations; there may be many data producers, with consequent variation
in production practices and categorisations used; and information systems may not be flexible enough to
take changes in phenomena and society into account. In practice, secondary data are interpreted in order
to utilise them for purposes other than those for which they were originally intended. The most typical
problems encountered in such a situation are the lack of data on important background phenomena and
discrepancies between the users and producers of data as regards their beliefs and knowledge concerning
the nature of data. It is possible to grasp the real nature of the data only if one understands (a) what
factors have led to the production of certain data and a particular information system, (b) what are the
sources and consequences of the type of organisation and data structures used, and (c) whether the data
have an effect on the understanding of their domain [24,32].

2.2.2. Data structures
Event-history data consist of observations of the form (τk,Dk), whereτk is an ‘occurrence time’ and

Dk is an ‘explanation’ for the event (and n is the number of observations andτ1 � τ2 � . . . τn and
τi < τj for at least one observationi �= j andi, j, k = 1, 2, . . . , n).

UsuallyDk consists of a set of attributes (variables). However, not all the attributes necessarily contain
important or interesting information. Some attributes can be irrelevant to the solving of particular problem
or can be easily derived from other attributes. It is often reasonable to divide up the relevant information
into two subsets of attributes. The first subset defines an event typeEk and the other includes important
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Fig. 4. An example of event-history data and the corresponding event sequence.

‘covariate’ informationik. For the sake of generality it is useful to allow a transformationfk for the
occurrence timeτk. If not stated otherwise,fk(τk) = τk (k = 1, 2, . . . , n).

Letmbe the number of distinct occurrence times,ti be theith distinct occurrence time (i = 1, 2, . . . ,m)
and the event setAi be the set of relevant information on observations occurring at the same time, i.e.
Ai = {(ti,Ek, ik)}, where i = 1, 2, . . . ,m and for everyi, k is over the observations for which
ti = fk(τk).

The generalised event sequenceS is defined to be a queue of event sets sorted by the (transformed)
occurrence time, i.e.S =< A1,A2, . . . ,Am >. In addition, let the conditional event sequence, to
be called an event subsequence, be a sequenceS θ =< Ai|Ai ∈ S and conditionθ is true>, where
i = 1, . . . ,m.

The definition of the generalised event sequence given above is not very rigorous and can be used in
the absence of any knowledge about the event-history framework. However, if one uses this framework,
generalised event sequences acquire a constructive and intuitively clear interpretation. Moreover, trans-
formations allowed in generalised event sequences make it possible to use the same data structure in the
implementation of different statistical and data mining methods.

2.2.3. An example of a generalised event sequence
Figure 4 shows an example of event-history data and the corresponding event sequence, which could be

produced by system – say system P, presented in Fig. 2. Two graphical representations of this particular
event history are also shown. The first is an event-history description of transitions in a system where an
individual actually stays in a current state until there is a transition to another state. In the second, only
the events occurring are marked on the figure. Since the time between two consecutive events is also
the length of stay in a particular state, it is often very useful to include a ‘length of stay’ attribute in the
covariate attributesik, even though it can be easily calculated from the corresponding occurrence times.

In the definition of a generalised event sequence, parallel occurrences of events are allowed. In
principle, the systems approach can be rendered valid in this case by defining each combination of event
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Fig. 5. An example of a situation with parallel occurrence times.

sets as a ‘new’ event type. In other words, one can think of the explanation for an event type as a
combined description of events occurring at the same time. However, in many cases it is reasonable to
assign the parallel events to different event types, since it is possible to find ‘natural’ interpretations for
these parallel events.

The data shown in Fig. 4 constitute a description of movements of individual X in a system P. Let Q be
a system with two states (state F: ‘married’ and state G: ‘not married’). As a result, data corresponding
to the movements of individual X in the system Q have the same form as the data in Fig. 4. Figure 5a
shows an example of this kind of situation. Now there are two event histories for individual X, one
corresponding to the path through the system P and the other to that through the system Q. In this case
it is known that the systems which ‘generate’ the data are parallel, but the two event histories can be
combined into one event sequence (Fig. 5b).

In the case of two parallel systems, the information concerning the ‘source system’ of an observation
is a very valuable covariate. In general, there can, of course, be more than two data-generating systems.
If there is a need to restrict analyses to the observations obtained from some particular system, this can
be done easily by using an event subsequence conditional to the corresponding system.

In practice there are always event histories for more than one individual. It is thus trivial to include a
covariate which identifies an individual, for example his or her social security number, while the whole
data set still has the form of a generalised event sequence. Again it is possible to restrict the analyses to
a pretermined set of observations by using event subsequences with suitable conditions.

2.2.4. Censoring
An additional point to consider is the fact that in practice, data constitute only a narrow window on the

dynamics of a phenomenon. In other words, the observations contained in the data set fulfil the condition
a < ti < b, wherea andb are finite constants andti is the occurrence time of an event. The problems
caused by a limited observation window are illustrated in Fig. 6, which shows examples of different
types of ‘censoring’. Each case corresponds to an individual’s length of stay in some particular state, i.e.
each case is combination of two events: transition to the state of interest and away from it. Dotted parts
of the lines are unobserved; this corresponds to the case where the ‘true’ transition to or from the state
is not observed. Censoring in fact guides the possibilities for analysis, and it must be taken into account
in such analyses.

In the cases (a) and (g), there are no observed transitions to or from the state. This kind of censoring
can be very problematic if the very first (or last) occurrence of some event type is considered more
important than other occurrences (for example the first diagnosis of schizophrenia or the first back-
surgery operation). In the case (b), the true transition to the state is not observed, but the individual was
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Fig. 6. Examples of censoring.

in that state when the observation began, and the transition time from the state is known. In the case (c)
both transitions are observed, but there is a potential problem, because the data outside the observation
window are not complete for all individuals (typical situation for hospital discharge data). The case
(d) corresponds to the uncensored observation. In the case (e), there has been an unknown or ‘wrong’
transition from the state (drop-outs or ‘competing risk’). It is also possible that the follow-up has ended
before the occurrence of the event of interest (case f) or the transitions to and from the state are outside
of the observation window (case h).

2.2.5. Statistical interpretations of a generalised event sequence
A generalised event sequence can be interpreted as a sample path of a marked point process, if the

occurrence times for all events are distinct. This leads to a very general family of statistical hazard-rate
models suitable for censored data (see e.g. [1]). In practice, all methods in the event-history framework
are special cases of this general interpretation.

For example, there are many situations in which the ‘calendar time’ of event occurrence is not
important, since the ‘real’ information is the time between two consecutive events. In other words, the
‘starting time’ of a follow-up can vary between individuals. A traditional solution, very common in
survival analysis, is to transform the time axis from calendar time to ‘failure time’. This can be done
using a transformation functionfk(τk) = τk − bk, wherebk is the occurrence time of ‘starting event’ of
a corresponding individual andk = 1, 2, . . . , n (see e.g. [7,18]).

Assuming that the probability of the next event type (state) depends only on time spent in the current
state, an appropriate choice for a model is a semi-Markov-model (see e.g. [29]). By restricting the
probabilities to change only at discrete time points, the semi-Markov model can be formulated using
the Markov chain, where the state space is expanded in a proper way (see e.g. [14]). In the traditional
Markov chain, the probability of the next event type (state) depends only on the current state (first-order
Markov property), and the probabilities are time-homogeneous. In fact, the Markov chain interpretation
corresponds to a situation in which the exact occurrence time is not important and only the order of
observations matters. A generalised event sequence can be transformed to an event type sequence of this
kind by using the transformationfk(τk) = k(k = 1, 2, . . . , n).

Moreover, by choosing the transformation functionfk so that it is of the formfk(τk) = c, wherec is
an arbitrary constant andk = 1, 2, . . . , n, the time dimension of the event sequence can be eliminated
and the sequence reduces to the data miner’s classical market basket model (see e.g. [12], Chapter 6) .



510 R. Sund / Utilisation of administrative registers using scientific knowledge discovery

2.3. Data preprocessing

Usually massive second-hand data sets contain so much information and so many domain-specific
features, inaccuracies and problems that raw data as such are not usable. In order to use data in problem
solving, there must be understanding of the connections between the problem and the data. In register-
based analyses, the problem, domain knowledge and data determine the most suitable model for the final
problem solving. Typically it is possible to construct data sets of the event-history type using register
data. Preprocessing can also be interpreted as a kind of technical operationalising phase in the research
process.

2.3.1. Data abstraction
Often the connections between highly specific raw data and the highly abstract domain knowledge are

so complicated that it is not possible to find any direct links between data and knowledge. An intelligent
interpretation of raw data must be embedded into analyses, so that the resulting derived data set is at the
level of abstraction corresponding to the current problem. Since noise is an unavoidable phenomenon,
some kind of data validation and verification which makes use of knowledge should also be performed.
This kind of task, performed in order to abstract higher-level concepts from possibly time-stamped data,
is called data abstraction (see e.g. [20], Chapter 2; [30]). In the discovery of medical knowledge, data are
usually patient-specific, while medical knowledge is patient-independent and consists of generalisations
that apply across patients. For example, a complication after surgical operation is a medical concept, but
from individual-based data it must be abstracted by using some ‘rules’, such as a list of some particular
diagnosis codes recorded in data[RF6].

2.3.2. Data cleaning
Real-world data are very often more or less incomplete, noisy and inconsistent. Data cleaning involves

detecting and removing errors and inconsistencies from data in order to improve the quality of data (see
e.g. [25]). Compared to data abstraction, cleaning is more data-driven and technically oriented. In other
words, corrections of erroneous and inconsistent codes as well as missing values can be usually made to
the whole database, but data abstraction always results in problem-specific derived data sets.

2.3.3. Data integration and reduction
Two other common types of preprocessing are known as data integration and data reduction. The idea

in data integration is to include data from multiple sources in analyses; the process is also known as
record linkage (see e.g. [26,36]).

Data reduction results in a reduced representation of a data set which is much smaller in volume than
the original data set, yet produces the same (or almost the same) analytical results (see e.g. [12], Chapter
3). Data reduction can in fact consist of anything from simple database queries to very complicated
analyses.

2.3.4. Preprocessing tasks in the event-history framework
Sometimes it can in fact be difficult to distinguish what is operationalising, what is preprocessing and

what is modelling. All these phases need interpretation and evaluation of the results. Since these are also
highly domain-specific and problem-specific, it is difficult to give any general suggestions concerning
tasks and methods for analyses, other than that the problem in question implicitly defines the most
suitable technique and that the assumptions underlying techniques applied must be valid.



R. Sund / Utilisation of administrative registers using scientific knowledge discovery 511

However, some non-trivial preprocessing tasks in the event-history framework could include: ‘defin-
ing’ the state space for some system (What happens to a patient after a surgical operation?); finding
interesting and frequent combinations of patterns (What combinations of diagnosis and operation codes
are frequent?); assigning patterns to adequate hierarchies (What diagnoses relate to complications of a
surgical operation?); and confirming the expert’s ‘hypotheses’ about the phenomenon from data.

Most analysing techniques are feasible only in the case of moderately small data sets, since these
typically need access to the whole data set, and the processing time will be directly proportional to
the physical file size. In fact, many data mining methods are very well suited in such circumstances
and are clearly something that is needed in practical data analysis. It can be stated that a sophisticated
preprocessing operation incorporating non-technical domain knowledge in order to scale things down
to a size fit for more specific statistical analyses is the most important and time-consuming part of
register-based data analysis.

One very straightforward but extremely useful preprocessing technique is ‘pattern remapping’. The
idea is to first ‘forget’ the time dimension in the generalised event sequence and to use a levelwise search
(see e.g. [21]) to extract the frequent patterns from data, regardless of occurrence times. These patterns
(such as a list of medical diagnoses) are then given to a domain expert, who can identify and make
hierarchical groupings for the relevant patterns. In the remapping phase, interesting patterns are then
assigned to appropriate event types simply by ‘renaming’ interesting patterns according to suggestions
made by the domain expert. Finally, the time dimension is restored and records lacking interesting
event types are removed. This abstraction usually results in a considerably reduced data set with an
interpretation corresponding to the current problem.

3. Practical example: Hip-fracture surgery

This example is a simplified extract from a study, which aimed 1) to develop and implement register-
based performance indicators to measure the effectiveness of surgical treatment of hip fracture and 2)
to evaluate and compare the effectiveness of health-care providers. The complete results are reported
elsewhere [27,33]. The study is a part of a larger project which aims to develop register-based methods
for the measurement of effectiveness in specialised health care.

3.1. Defining the problem

The first task of the project was to build up a research group consisting of experts from different fields.
The group defined the actual problem more meticulously: the idea was to identify all hip-fracture patients
from the Finnish Health Care Register and follow the life events that they encountered after hip-fracture
surgery according to register data.

A simplified system related to this particular problem is shown in Fig. 7. As can be seen, the first
hip-fracture operation performed on an individual patient has a key role in the characterisation of this
phenomenon. Actually, the state preceding the first hip-fracture operation also matters from the clinical
point of view, since the patients coming from home are usually in better condition than patients who are
already in residential or hospital care. However, the major interest is in the events and pathways of care
following the first hip-fracture operation. In this case, these events are classified into four categories.
If everything goes well, the patient should return home. Hip fracture is a serious condition for the
elderly, and it can also be a starting point or catalyst for other problems which may result in the need for
residential or hospital care. A hip-fracture operation may even be followed by fatal complications. This
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Fig. 7. System characteristics of significant life events related to hip-fracture surgery.

particular categorisation was chosen because the event types comprised the events of interest from the
viewpoint of the original problem; and even more importantly, these life events are recorded in various
registers.

For the sake of generality, the system’s formulation also allows there to be multiple events after hip-
fracture surgery. As a matter of fact, the pathways of care are more interesting than single events in
situations such as a cost-effectiveness evaluation. In the formulation of the system, only death is an
absorbing state; all other states can be followed by any other state, i.e. only the death state ends a path in
the system. Moreover, even though these four states are distinct, they are not necessarily independent.
For example, death may be more probable after complications, or it may not be very likely that the
patient will return home if long-term residential care is approved. The absorbing death state causes
even more problems, because it is not possible to say of any individual that there is an increased risk
of complications after death. However, it is possible to speculate what would have happened if death
had not occurred. All in all, this kind of quite simple system definition seems to result in an extremely
complicated competing risks model, and more simplifications are needed in the actual modelling.

3.2. Understanding and preprocessing data

A cohort of patients with hip fracture in 1998 or 1999 was identified in the Finnish Hospital Care
Register using a simple diagnosis-group abstraction (all patients with at least one ICD-10: S72 diagnosis
in 1998 or 1999). Using the unique personal identity codes of the patient cohort, data on all inpatient
and outpatient hospital care and deaths for this cohort were obtained from the Finnish Health Care
Register, the data warehouse of the Finnish Hospital Benchmarking Project and the National Causes of
Death Register. The results of these straightforward database queries were integrated into a new data set
containing 167 952 records for 17 099 patients.

Each record in this data set corresponds to one care episode in hospital (or death), not any actual event
of the system, i.e. each observation includes information, such as patient and hospital ID-numbers, age,
sex, area codes and diagnosis and operation codes, as well as dates of admission and discharge (or death).
Data cleaning was performed in order to correct impossible simultaneous hospital episodes, systematic
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errors in the use of symptom vs. cause diagnoses, and some missing or erroneous attribute values in area
codes.

Many types of censoring occur in this data set: the first hip-fracture operation (or other important
event) can be outside the observation window; some hospital episodes may have begun before 1998;
follow-up finishes at the end of 1999 (there are census data available for the last day of every year in the
Finnish Health Care Register); and follow-up may be terminated by the death of a patient.

Operation codes corresponding to hip-fracture surgery were abstracted into two different operation
types. Using this and the diagnosis-group abstraction of hip fracture, hip-fracture operations were
identified from the data. Since the state preceding a hip-fracture operation was also important, the
histories of the patients were traced backwards and the preceding state was classified as home or
residential/hospital care by using data abstraction of a more complicated nature.

The forward-direction abstractions were even more complicated, and all event types needed special
abstractions and techniques. For example, the acute complication events were identified using the pattern
remapping technique, in which all clinically relevant complication diagnoses were remapped to one event
type.

3.3. Modelling, evaluation and reporting

For statistical modelling purposes it was assumed that any acute complication event occurring after
a hip-fracture operation is an outcome which reflects the effectiveness of the surgical treatment. In
addition, deaths and the upper limit of the observation window were assumed to cause censoring of
the event of interest. With these assumptions, the modelling reduced to standard survival analysis (see
e.g. [7]) where the variables of interest are the time between a hip-fracture operation and a complication
or censoring event, and the censoring indicator. These variables were calculated for all of those patients
who were (a) aged over 60 years and (b) had been living at home before surgery. The final preprocessed
data set had 8824 records, each containing relevant variables for one patient.

In survival analysis, the distribution function of failure time random variableT is F (t) = P (T � t),
wheret � 0, andS(t) = P (T > t) = 1−F (t), t � 0, is the corresponding survival function. Assuming
F to be absolute continuous andf to be the corresponding density, the hazard function is defined by
r(t) = f(t)/S(t), t � 0. The differentialr(t)dt = P (T ∈ dt|T � t) has the intuitive interpretation of
‘the conditional failure probability at timet, given survival to at leastt’. Moreover, the hazard function
determines uniquely the distribution function, and hazard-based models are often a convenient way to
handle censored observations.

In spite of the fact that the time dimension includes a lot of information, the actual effectiveness
indicators should be as easy as possible to interpret. In this study the continuous time scale was reduced
to a simple dichotomous scale which merely indicates whether or not the event of interest has occurred
in the case of an individual during some particular ‘limit’ time period. However, it is not obvious how
such ‘limit’ times should be chosen. In addition to using clinical knowledge, it is also possible to utilise
data empirically in this task. Since the outcome was an acute complication, the hazard function of
acute complication occurrences was estimated. According to the hazard function presented in Fig. 8, the
probability of acute complications was higher during the first 30-day period after a surgical operation.
This finding based on the data corresponded to the domain knowledge and provided some evidence that
the data abstraction was done in a proper way.

Since there are censored observations in the data, the proportion of the risk population for whom an
event of interest occurred within the ‘limit’ time period does not necessarily correspond to the ‘true’
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Fig. 8. Hazard function for acute complication.

occurrence rate. In other words, rates must be estimated using more sophisticated methods. In this
study the censoring was assumed to be independent (survival experience in the future is not statistically
altered by censoring and survival experience in the past). The ‘limit’ time rates were estimated using
product-limit (Kaplan-Meier) estimators. In addition, the counts of events were needed, and the corrected
‘observed’ counts were calculated using the relationOi = NiF̂i(t), wherei indexes the risk population,
Ni is the size of risk populationi andF̂i(t) is the estimated cumulative probability of event occurrence
at timet (‘limit’ time rate) in risk populationi.

3.4. Profiling the providers

The most useful information is obtained when rates are evaluated for health-care providers, such as
hospitals or hospital districts. Profiling analyses of this kind also allow comparisons of effectiveness
between providers. However, the profiling can be quite complicated, since there is variation between
providers for at least three reasons: 1) differences may be attributable to random variation caused by the
size of the provider, 2) the patient case-mix may vary from provider to provider, and 3) providers may
differ in the effectiveness of their care. For these reasons, a statistical model for provider profiling in
which provider differences are modelled explicitly was constructed in the study.

For an individual patientj, an observed outcome has the form(Yj|xj , zj), wherexj is a vector of
patient characteristics andzj is a provider-specific effectiveness component. The expected outcome for
a patient isE(Yj |xj), i.e. a constant degree of effectiveness is assumed. Obviously, if the expected
outcome is subtracted from that observed, the remaining residual reflects the effectiveness of care of a
provider.

In the case of binary outcomes, a logistic regression is a suitable tool for the calculation of the expected
outcomes. The idea is to construct and estimate a model in which the observed outcome is a dependent
variable and patient characteristics are independent variables. Using this kind of model, it is possible
to calculate predicted values for all individuals using patient characteristics and estimated values of
parameters with the inverse logit transformation.
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Since the focus in profiling is on providers and not on individuals, the observed and expected outcomes
must be aggregated to the provider level, i.e.Oi =

∑
Yj andEi =

∑
logit−1(xjβ), where the sums are

over patients treated by provideri andβ is an estimated parameter vector.
Traditionally the ratio of observed to expected outcomes multiplied by the mean rate is used as a

risk-adjusted rate for a provider. This quantity forms the basis for comparisons between providers and
can be interpreted as the estimated event rate for a given provider if the population of patients treated
were identical to the nationwide case-mix.

Since the observed outcomesOi are non-negative integers describing frequencies of events, they can
be assumed to have a Poisson distribution with unknown meanµ i. That is,Oi ∼ Poisson(µi), where
log µi = logEi + θi andi is the provider index. In other words, it is assumed that the expected outcomes
Ei adjust the patient characteristics, andθi describes the variation caused by provider. The use of
logarithms guarantees thatθi remains positive in the model.

Case-mix adjustment does not necessarily eliminate the variation in performance indicators in such
a way that the indicators reflect a provider‘s effectiveness of care. For example, in data sets with
a hierarchical structure there often exists correlations between observations, and this may result in
overestimated differences in profiling analyses. Differences in the sizes of providers may also cause
problems. For example, rates can not be estimated accurately for small providers.

Assuming the exchangeability of providers (i.e. that the results for all providers are equal if there is
infinite number of (similar) patients), a two-level hierarchical model can be used to solve the problems
mentioned above. A simple solution is to assume that variation caused by providers is normally
distributed, i.e.θi ∼ N(α, σ2), where exp(α) is the ‘general’ case-mix-adjusted risk ratio andσ2

describes the variance between providers (in logarithmic scale). This kind of hierarchical Bayes model
needs appropriate prior distributions for the hyperparametersα andσ2, such asα ∼ N(0, 106) and
σ−2 ∼ Γ(0.001, 0.001). The estimation of posterior distributions for parameters of interest (in this case
θis for all providersi) can be done using Markov chain Monte Carlo (MCMC) simulation [22].

Multiplying the obtained adjusted risk ratios by the mean rate results in easily interpretable risk-
adjusted rates for providers. The use of a hierarchical multilevel model eliminates many drawbacks
of traditional profiling analyses. Multilevel models are well suited to the simultaneous calculation of
many confidence intervals (multiple comparisons problem), and they give more conservative estimates
for differences between providers than do traditional methods [11].

3.4.1. Example drawn from the results
Figure 9 shows the hospital-district-specific risk-adjusted rates for 30-day complication rates. The

mean 30-day acute complication rate was 13.0%, and there were no significant differences between
districts according to the 95% confidence intervals of rates. However, according to the 50% confidence
intervals, hospital districts 9 and 15 seem to have slightly higher rates than others. For more results,
see [27] and [33].

4. Conclusions

This paper has presented a methodological framework for the utilisation of administrative registers in
the creation of scientifically valid information. This has been done by discussing essential methodological
criteria encountered in the practical research process and by combining fruitful methodological ideas
from different fields, such as statistics, data mining and sociology. The emphasis has been on the
understanding of connections between problem, data and analysis in the case of secondary data sources.
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Fig. 9. Hospital district-specific risk-adjusted 30-day complication rates in 1998 and 1999. Rates as complications per 100
patients. Thin parts of lines correspond to 95% confidence intervals and thick parts correspond to 50% confidence intervals.
Mean rate is 13 complications per 100 patients (dotted line).

In the introduction, the problem caused by a changing paradigm of data analysis was discussed.
Different perspectives are needed in analyses. Bringing carefully defined ideas originating from some
field into the body of knowledge concerning other fields may create new possibilities or solve some
problems – if the scholars working in the ‘object field’ are open-minded enough. Moreover, some pieces
of knowledge, such as the criteria for scientific information and the phases of research processes, may be
‘self-evident’ issues for many researchers and data analysts, but the listing of these principles is useful
in any case, since it helps to anticipate and avoid the most crucial pitfalls.

The paper contains some key points concerning the research process when it is based on massive
secondary data sources. The secondary nature and massive size of data sets highlight the importance of
scientific issues as compared to the technical questions. Effective research utilising massive secondary
data sources requires broad expertise and active collaboration, since it is waste of time to reinvent things
which are trivial to some other scholars. This can easily lead to the problem that there is no common
language shared by experts in different fields. The ‘slaves of ideologies’ think differently and have
different latent assumptions, so it can be difficult to find suitable compromises needed in order to achieve
reasonable results. An even bigger mistake is to forget the possibly major impact that decisions made
during the execution of a study can have on its outcomes. In addition, beliefs concerning the nature of
secondary data are not the same for producers and users, and this generates unknown amounts of ‘noise’
for the results if such issues are not considered carefully. Sophisticated preprocessing – incorporating
knowledge from the non-technical domain in order to scale things down to a size fit for more detailed
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statistical analyses – is the most important and time-consuming element in the register-based data
analysis. All in all, it can be stated that ‘data are not collected, but produced; research results are not
findings, but creations’ [17].

There is a great deal of literature concerning the utilisation of register-based data in research (see
e.g. [6,10,16,23,28,35,37]). However, the perspective is usually very closely connected to the domain
field or to some particular problem, which makes it difficult to extract more generally applicable ideas.
Moreover, a purely problem-oriented approach can easily lead to a situation in which the contents of the
data are taken too literally. For example, one pitfall is to think that medical diagnoses are recorded in
administrative registers in just as detailed a manner as the diagnosis classification allows.

There are also two very common erroneous beliefs concerning the utilisation of register data in research.
It has been stated that the formation of research data is often technically easy, and that register data are
‘hard’ data representing the truth and providing evidence-based quantitative information. In spite of the
fact that time-consuming and expensive production of new data is avoided, according to the principles
presented above, the data preprocessing, which is full of ideologically dependent qualitative choices,
is the most fundamental and the most difficult part of register-based research. Data analysis is never
‘easy record linking’. It is at least as important a part of the research as the domain knowledge. All
data analysts should remember that they are not just assistants to ‘real researchers’ but full and equal
members of the research group. Collaboration is the key to obtaining the results. Nobody can be an
expert on everything.

The principles of the research process that were presented above are the basis for the actual utilisation
framework. Since the ideas were somewhat abstract in nature, some suggestions for concrete and
practically useful interpretations were considered more carefully. The event-history framework was
suggested as a well-developed option in outlining the characteristics of dynamic phenomena. A systems
approach to the operationalisation of dynamic phenomenon was described as a helpful tool in generating
a common language for experts from different fields. The structure of event-history data was shown to
have the form of a generalised event sequence and to be a suitable data structure for the handling of
second-hand register data. We drew attention to aspects of censoring which, in connection with event-
history data, implicitly define possible model types for problem solving and provide a glimpse of the
data-generating process, which has an intuitive interpretation in the event-history framework. Moreover,
a wide variety of suitable data structures for traditional models can be produced from the generalised
event sequence as special cases using the time-transformation property presented. In addition, common
preprocessing types were reviewed, some examples of possible preprocessing tasks were given and a
pattern remapping technique was formulated. Finally the ideas were illustrated by means of a practical
example. It was seen that register-based data analysis becomes very complicated and challenging even
in seemingly simple situations.

All in all, this paper is simply a monologue presented by a statistician who is specialised in com-
putational statistics and has a background in the social sciences, research interests in problems related
to health services research, and experience in the production of official statistics, the maintenance of
information systems, the development of statistical software, the teaching of statistics, and consultation
with other researchers. In other words, the issues presented in this article are just an ‘insider’s’ collection
of pieces of preliminary knowledge which are essential to the conduct of scientific research based on
administrative registers.
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