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ABSTRACT

In respiratory health research, interest often lies in
estimating the effect of an exposure on a health
outcome. If randomization of the exposure of interest
is not possible, estimating its effect is typically compli-
cated by confounding bias. This can often be dealt with
by controlling for the variables causing the confound-
ing, if measured, in the statistical analysis. Common
statistical methods used to achieve this include
multivariable regression models adjusting for selected
confounding variables or stratification on those vari-
ables. Therefore, a key question is which measured
variables need to be controlled for in order to remove
confounding. An approach to confounder-selection
based on the use of causal diagrams (often called
directed acyclic graphs) is discussed. A causal diagram
is a visual representation of the causal relationships
believed to exist between the variables of interest,
including the exposure, outcome and potential con-
founding variables. After creating a causal diagram for
the research question, an intuitive and easy-to-use set

of rules can be applied, based on a foundation of rigor-
ous mathematics, to decide which measured variables
must be controlled for in the statistical analysis in
order to remove confounding, to the extent that is pos-
sible using the available data. This approach is illus-
trated by constructing a causal diagram for the
research question: ‘Does personal smoking affect the
risk of subsequent asthma?’. Using data taken from
the Tasmanian Longitudinal Health Study, the statisti-
cal analysis suggested by the causal diagram approach
was performed.

Key words: causal inference, confounding, directed acyclic
graph, observational study.

Abbreviations: SES, socioeconomic status; TAHS, Tasmanian
Longitudinal Health Study.

INTRODUCTION

In respiratory health research, we often wish to inves-
tigate possible causal relationships between expo-
sures and health outcomes. For example, we might
wish to know the effect of individuals’ smoking
behaviour on their risk of subsequent asthma. Using
data from a cohort study, we can estimate this effect
from the observed association between personal
smoking and subsequent asthma (e.g. the odds or risk
ratio for asthma comparing smokers and non-
smokers) provided that smokers and non-smokers do
not differ in terms of other characteristics associated
with the risk of subsequent asthma; otherwise, the
estimated exposure effect will be biased. This bias,
typically called confounding, is usually dealt with by
adjusting for the differing characteristics, provided
that they are measured, in a multivariable regression
model.1 Alternatively, if few variables need to be
adjusted for, stratification into subgroups defined by
these characteristics can be performed. However, in
order to apply either of these statistical analyses, we
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must first decide which measured variables need to
be adjusted for in order to remove confounding,
insofar as that is possible using the available data.
This variable selection process is often called con-
founder selection.

A common approach to confounder selection is to
apply a stepwise selection procedure. This approach is
not recommended for many reasons but particularly
because it is based on P-values alone.2 A popular alter-
native is to use the change-in-estimate criterion where
a variable is considered to be a confounder if its omis-
sion from a regression model changes the estimated
exposure effect by more than a prespecified thresh-
old.3 A third approach defines confounders as vari-
ables which are: (i) associated with the exposure in the
source population; (ii) associated with the outcome
among the unexposed; and (iii) not on the causal
pathway. All of these confounder selection strategies
can, in certain circumstances, lead to an increase—
rather than the expected decrease—in confounding
bias when adjusting for the selected variables.4,5

Various authors have stressed that background knowl-
edge of causal structures is required for confounder
selection; criteria based on statistical association
alone are insufficient.2,5

In this paper we discuss an alternative approach to
confounder selection using causal diagrams, also
called directed acyclic graphs. Causal diagrams utilize
assumptions regarding the underlying causal rela-
tionships between relevant variables to perform con-
founder selection rather than relying on observed
statistical associations.6–10 We use a causal diagram
approach to consider the question of whether per-
sonal smoking affects the risk of subsequent asthma.
We create a causal diagram for this question based on
background knowledge of the underlying causal
structure and demonstrate how our diagram can be
used to decide which variables must be adjusted for in
a multivariable analysis in order to remove confound-
ing bias. We apply the statistical analysis suggested
by the causal diagram approach using data from the
Tasmanian Longitudinal Health Study (TAHS).

CAUSAL DIAGRAMS

A causal diagram, also known as a causal directed
acyclic graph, is a representation of the underlying
causal relationships relevant to the research question.
Variables, or characteristics, are represented by nodes.
Arrows between nodes represent causal effects, depic-
ting the existence—but not the strength—of causal
relationships. Causal diagrams contain only unidirec-
tional (single-headed) arrows; bidirectional or undi-
rected arrows cannot be included. They are acyclic,
meaning that following a series of arrows in the indi-
cated direction cannot lead back to the original node
because variables cannot cause themselves. Finally, a
causal diagram must contain all variables that have a
causal effect on two or more other variables included
in the diagram, even if unmeasured in the dataset.

In our discussion of causal diagram theory, we will
assume that the dataset being used for the statistical
analysis is so large that we can ignore random error

(sampling variability), allowing us to focus on system-
atic sources of confounding bias in selecting variables
to adjust for in the statistical analysis. In our analysis
(Section ‘Estimating the effect of personal smoking on
adult asthma: the TAHS data’), we acknowledge the
role of sampling variability by calculating 95% confi-
dence intervals and P-values.

Three simplified causal diagrams

To perform confounder selection using a causal
diagram, we first need to create a diagram that we
believe captures all the causal relationships relevant
to our research question. Figure 1 shows three causal
diagrams, each representing a different set of causal
assumptions that we could propose for the question
of whether personal smoking affects subsequent
asthma. We note that we believe the true causal sce-
nario to be much more complex (see Fig. 4 for our
proposed causal diagram that we use to inform our
statistical analysis in Section ‘Estimating the effect of
personal smoking on adult asthma: the TAHS data’).
Although our question of interest concerns the causal
effect of smoking on subsequent asthma, in our three
simplified examples, we have assumed that this
causal effect does not exist, as indicated by the
absence of arrows from personal smoking to adult
asthma, in order to more clearly explain the features
of causal diagrams relevant to confounder selection.

Figure 1a encodes the assumption that childhood
asthma has a causal effect on both subsequent
smoking behaviour and subsequent asthma of an
individual. Further, it assumes that childhood asthma
is the only variable that affects both personal smoking
and subsequent asthma, as any other such variable
would also have to be included in the causal diagram.

Figure 1b shows a slightly more complex causal
scenario. In this case, childhood asthma is assumed to
have no causal effect on subsequent smoking behav-
iour, but childhood asthma and personal smoking are
connected by a common cause (parental smoking).
Similarly, it assumes that the relationship between
childhood and adult asthma is not a causal effect of
the former on the latter but that both are caused by
the underlying atopy of the individual.11 We suppose
that underlying atopy cannot be adequately meas-
ured; however, it must still be included in the causal
diagram if we believe it affects both childhood and
adult asthma.

Figure 1c is very similar to 1b but additionally
encodes the assumption that childhood asthma has a
causal effect on personal smoking behaviour, as well
as being connected through the common cause of
parental smoking.

The key assumptions in a causal diagram are in the
absence of arrows. In Figure 1b, for example, by omit-
ting an arrow from childhood asthma to personal
smoking, we are explicitly asserting our assumption
that childhood asthma has no effect on the indivi-
dual’s subsequent smoking status.

Paths and association

Causal diagrams explicitly separate the concepts of
causation and association. The underlying causal
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structures shown in the causal diagram inform us
about which statistical associations between the vari-
ables in the diagram are present, assuming that the
diagram correctly depicts the underlying scenario.
This allows us to form valid estimates of causal effects
from the observed associations (either unadjusted or
adjusted for measured variables) in our data.

We begin by using the causal diagram to decide
whether, under the assumptions of the diagram, an
unadjusted comparison of the outcome between
exposed and unexposed participants (i.e. the unad-
justed exposure-outcome association) will be a
biased estimate of the causal effect of the exposure on
the outcome. Using the causal diagram, we can deter-
mine whether spurious (non-causal) exposure-
outcome association is present. If no such spurious
association exists, then the unadjusted comparison
will be unbiased. If spurious association exists, this
unadjusted comparison will be biased. In this case,
adjustment for measured variables may help to
remove the bias (see Section ‘Removing confounding
bias by adjustment’).

In causal diagrams, a path from the exposure (per-
sonal smoking) to the outcome (adult asthma) is a
series of arrows connecting the exposure and
outcome, irrespective of the direction of arrows. A
causal path from the exposure to the outcome is a
path starting at the exposure in which each arrow is
followed from tail to head until it reaches the outcome
(e.g. personal smoking → bronchial hyperreactivity →
adult asthma). These causal paths are the only paths
in the diagram that depict causal effects of the expo-

sure on the outcome. All other paths from exposure
to outcome are non-causal. The three causal dia-
grams in Figure 1 contain no causal paths from per-
sonal smoking to adult asthma. Under these three
scenarios, any observed association between expo-
sure and outcome is spurious (non-causal). Figure 1a
and b each contain one non-causal path from per-
sonal smoking to adult asthma, while Figure 1c con-
tains two such paths: Path 1 (personal smoking ←
parental smoking → childhood asthma ← atopy →
adult asthma) and Path 2 (personal smoking ← child-
hood asthma ← atopy → adult asthma).

Suppose that Figure 1a depicts the true underlying
relationship between personal smoking and adult
asthma. In this scenario, childhood asthma plays the
role of a traditional confounder—it is a common
cause of the exposure and outcome. This results in
a ‘mixing of effects’ of smoking and childhood
asthma on adult asthma.12 For example, childhood
asthmatics may be less likely to smoke but more
likely to have adult asthma. Then, an unadjusted
comparison of smokers (a small proportion of whom
were childhood asthmatics) and non-smokers (a
larger proportion of whom were childhood asthmat-
ics) would falsely conclude that the non-smokers
have a higher risk of asthma, even though personal
smoking truly has no causal effect on adult asthma.
In statistical terms, the confounding by childhood
asthma creates spurious (non-causal) association
between personal smoking and adult asthma. There-
fore, under Figure 1a, an unadjusted analysis will be
biased.

Adult 
asthma

Childhood 
asthma

Personal 
smoking  

Adult 
asthma

Personal 
smoking

Underlying 
Atopy

Parental 
smoking

Childhood 
asthma

Adult 
asthma

Personal 
smoking

Underlying 
Atopy

Parental 
smoking

Childhood 
asthma

(a) (b)

(c)

Figure 1 Causal diagrams showing three possible underlying relationships connecting personal smoking and subsequent asthma. We
assume that all characteristics shown are measured, in the data to be used for analysis, except underlying atopy which is unmeasured.
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In causal diagram terminology, the path in
Figure 1a (personal smoking ← childhood asthma →
adult asthma) is open. This means that the relation-
ships shown within that path create association
between the variables at each end of the path (the
exposure and outcome).

Now suppose instead that Figure 1b depicts the
true relationship between personal smoking and
adult asthma. Despite there being a path from per-
sonal smoking to adult asthma in this diagram, per-
sonal smoking will not be associated with adult
asthma, so an unadjusted comparison of asthma
status between smokers and non-smokers will cor-
rectly conclude that personal smoking has no causal
effect on adult asthma; this unadjusted analysis is
unbiased. In the path of Figure 1b (personal smoking
← parental smoking → childhood asthma ← atopy →
adult asthma), childhood asthma is called a collider
variable; the arrows on this path ‘collide’ at childhood
asthma. In epidemiological terms, childhood asthma
is a common effect (of parental smoking and atopy).
Importantly, association is not transmitted across
common effects (collider variables). Just because two
factors share an effect does not mean that they them-
selves are associated. Thus, the path in Figure 1b is
closed; although the path connects the exposure to
the outcome, this connection does not create associa-
tion between these two variables.

Paths in causal diagrams are either open (they
transmit association) or closed (do not transmit asso-
ciation). Figure 2 lists a set of rules that can be applied
to each path in a causal diagram to decide if it is open
or closed.

An unadjusted comparison of the outcome
between exposure groups will be an unbiased esti-
mate of the causal effect of the exposure if there is no
spurious exposure-outcome association. This spuri-
ous association can only arise through open non-
causal paths from the exposure to the outcome. Thus,
an unadjusted comparison of the outcome between
the exposure groups will be unbiased only if all non-

causal paths between the exposure and outcome are
closed. In Figure 1a, the single non-causal path from
personal smoking to adult asthma is open (see rule 3,
Fig. 2); thus, the unadjusted analysis is biased. In
Figure 1b, the single non-causal path from personal
smoking to adult asthma is closed (rule 5, Fig. 2); thus,
the unadjusted analysis is unbiased.

When, as is typical, there are multiple non-causal
paths between the exposure and the outcome, each
path must be examined separately to determine if it is
open or closed in order to determine whether there
may be spurious association transmitted between the
exposure and outcome. Suppose Figure 1c, for
example, depicts the true causal scenario. In this case,
there are two non-causal paths from personal
smoking to adult asthma. One contains a collider
variable (Path 1: personal smoking ← parental
smoking → childhood asthma ← atopy → adult
asthma), and the other does not (Path 2: personal
smoking ← childhood asthma ← atopy → adult
asthma). Therefore, Path 1 is closed (rule 5, Fig. 2), but
Path 2 is open (rule 3, Fig. 2). Note that the definition
of a collider is path-specific. Childhood asthma is a
collider in Path 1 but not in Path 2. Because Path 2 is
open, spurious association exists between personal
smoking and adult asthma; thus, an unadjusted
analysis will be biased.

Removing confounding bias by adjustment

If an unadjusted comparison of the outcome between
exposure groups gives a biased estimate of the causal
effect of the exposure, it may be possible to remove
the confounding bias by performing an analysis
adjusting for a set of measured variables. We would fit
a multivariable regression model1 (e.g. a logistic
regression model) for the outcome, including the
exposure and the selected measured variables as
explanatory variables. The estimated exposure effect
from this model (e.g. the exposure odds ratio) will
provide an unbiased estimate of the causal effect of

A causal path from exposure to outcome
1. Is open (by definition it does not contain any collider variables)
2. Should be left open (do not adjust for any variables on these causal paths)

A non-causal path from exposure to outcome containing no collider variables
3. Is open if no variables on the path are adjusted for
4. Is closed if one or more variables on the path are adjusted for

A non-causal path from exposure to outcome containing one collider variable
5. Is closed if no variables on the path are adjusted for
6. Is closed if only non-collider variables are adjusted for
7. Is open if the collider variable,* is the only variable on the path adjusted for
8. Is closed if the collider variable,* and one or more other (non-collider) variables are adjusted for

A non-causal path from exposure to outcome containing more than one collider variable
9.   Is closed if no variables (or only non-collider variables) on the path are adjusted for
10. Is closed if at least one collider variable,* is not adjusted for
11. Is open if all the collider variables,* but no non-collider variables, are adjusted for
12. Is closed if all collider variables,* and one or more other (non-collider) variables are adjusted for

Figure 2 Rules to decide whether a particular path is open or closed in a causal diagram. *The same rules apply if, instead of adjusting
for a collider, we adjust for a variable that is caused by that collider.
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the exposure provided that adjustment for the
selected group of variables is sufficient to remove
confounding bias. In causal diagram terms, this
will be the case provided that adjustment for these
variables closes all non-causal paths from the
exposure to the outcome, thereby removing all spu-
rious exposure-outcome association, under the
causal assumptions encoded in the proposed causal
diagram.

Under Figure 1a, for example, we have seen that the
unadjusted analysis is biased because there is an
open non-causal path from personal smoking to adult
asthma. This path is closed by adjusting for childhood
asthma (rule 4, Fig. 2). Thus, under Figure 1a, a com-
parison of adult asthma between smokers and non-
smokers adjusting for childhood asthma status (e.g.
via a logistic regression model of adult asthma on
smoking and childhood asthma status) would cor-
rectly conclude that smokers and non-smokers have
the same odds (and so the same risk) of adult asthma.

Under Figure 1b, we have seen that an unadjusted
analysis would be unbiased. However, suppose that
we decided to adjust for childhood asthma as it fulfils
the traditional definitions of a confounder (it is asso-
ciated with exposure and outcome and is not on the
causal pathway). Unfortunately, if we adjust for child-
hood asthma, we will open the non-causal path
between personal smoking and adult asthma (rule 7,
Fig. 2). This creates spurious exposure-outcome asso-
ciation, thereby introducing bias into the estimated
exposure effect. Therefore, adjusting for childhood
asthma introduces bias.

To gain some intuition for this association intro-
duced by conditioning on a collider variable, let us
consider a slightly unrealistic version of Figure 1b.
Suppose that the two arrows pointing to childhood
asthma are deterministic: if a child is ‘atopic’ or has
parents who smoke (or both), the child will certainly
have childhood asthma; otherwise the child will not.

If we consider only the subgroup of participants who
have childhood asthma (which is another way of
adjusting for childhood asthma), then any child
whose parents do not smoke must be atopic. Con-
versely, any child who is non-atopic must have
parents who smoke. Thus, after adjusting for child-
hood asthma, parental smoking status provides infor-
mation about atopy status and vice versa; these
characteristics are now strongly associated. This in
turn leads to spurious association between personal
smoking and adult asthma. This phenomenon is often
referred to as M-bias (due to the ‘M’ shape that can be
formed by drawing Figure 1b upside-down) or, more
generally, collider-stratification bias.4

Table 1 lists various analysis strategies that might
be used to estimate the effect of personal smoking on
adult asthma under the three scenarios depicted in
Figure 1 and whether each strategy leads to a biased
or unbiased estimate of the exposure effect. We see
that under Figure 1b, an unadjusted analysis, or an
analysis adjusting for both childhood asthma and
parental smoking, will lead to an unbiased estimate of
the effect of personal smoking on adult asthma,
whereas adjusting only for childhood asthma will
produce a biased estimate of effect. In Figure 1c, both
non-causal paths are simultaneously closed only
when both childhood asthma and parental smoking
are adjusted for; thus, these variables must be
adjusted for in the statistical analysis in order to
obtain an unbiased estimate of the exposure effect.

Further considerations

It is important to stress that the previous sections
assume that our proposed causal diagram correctly
depicts the underlying scenario. If our causal diagram
is incorrect, our list of variables to adjust for may be
incomplete or the adjustment may even increase con-
founding bias. It might therefore be important to

Table 1 Summary of how different choices of variables to be adjusted for in the statistical analysis will affect bias in
the estimated effect of personal smoking on asthma under the three causal diagrams of Figure 1

Variables adjusted for† Status of each path
Estimated
exposure effect†

Figure 1a

Path P1: personal smoking ← childhood asthma → adult asthma
None (i.e. unadjusted analysis) P1 = Open Biased
Childhood asthma P1 = Closed Unbiased

Figure 1b

Path P1: personal smoking ← parental smoking → childhood asthma ← atopy → adult asthma
None (i.e. unadjusted analysis) P1 = Closed Unbiased
Childhood asthma P1 = Open Biased
Childhood asthma and parental smoking P1 = Closed Unbiased

Figure 1c

Path P1: personal smoking ← parental smoking → childhood asthma ← atopy → adult asthma
Path P2: personal smoking ← childhood asthma ← atopy → adult asthma

None (i.e. unadjusted analysis) P1 = Closed, P2 = Open Biased
Childhood asthma P1 = Open, P2 = Closed Biased
Childhood asthma and parental smoking P1 = Closed, P2 = Closed Unbiased

† Within a multivariable regression model.
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consider several different causal diagrams that might
show the true scenario and to assess the robustness of
the estimated effects to these causal assumptions.

The conclusion, from the confounder selection
process described earlier, will sometimes be that no
set of measured variables is sufficient to remove con-
founding bias. It may be possible to perform further
data collection to address this problem. If not, any
statistical analysis of the data must be cautiously
interpreted in the light of the unmeasured confound-
ing variables.

We have assumed that we are interested in the total
effect of the exposure on the outcome. If interest lies
in isolating particular pathways through which the
exposure is thought to affect the outcome—often
called mediation analysis—extra care is needed in
selecting an appropriate analysis.13

Clinical interest often lies in assessing the exposure
effect within a subgroup of individuals. For the
smoking-asthma question, the predominant focus
may be on the effect of personal smoking on subse-
quent asthma among people who had childhood
asthma (i.e. investigating asthma remission). Restrict-
ing the analysis to this subgroup is simply a different
way of adjusting for childhood asthma. Under
Figure 1b, for example, the observed smoking-asthma
association among childhood asthmatics will give a
biased estimate of the exposure effect, unless adjust-
ment for parental smoking is additionally performed
(via a multivariable regression model fitted on the
subgroup of childhood asthmatics).

Checking the proposed adjustment

The methods described earlier will often be able to
identify an adjustment set—a set of measured vari-
ables such that adjustment for these variables will
ensure all non-causal paths between the exposure
and outcome are closed, thereby providing a valid
estimate of the exposure effect under the proposed
causal diagram. Because identifying this adjustment
set can be a tricky process, there are various ways of
checking that adjustment for these variables will
indeed close all the necessary paths.

Shrier and Platt14 describe six simple steps, origi-
nally developed by Pearl,8 that can be used to check
that adjustment for the selected adjustment set
removes all spurious exposure-outcome association
under the assumptions encoded by the proposed
causal diagram. These are summarized briefly in
Figure 3.

Various computational tools exist to aid in the use
of causal diagrams. For example, DAGitty15 is an excel-
lent freely available online program that can identify a
suitable adjustment set, when given the proposed
causal diagram.

ESTIMATING THE EFFECT OF
PERSONAL SMOKING ON ADULT
ASTHMA: THE TAHS DATA

The TAHS data

In this section, we estimate the effect of personal
smoking on asthma remission (no adult asthma)

among participants who reported asthma during
childhood. We use data taken from the TAHS, a
population-based longitudinal cohort study of
8683 children born in 1961 and attending school in
Tasmania in 1968.

At study enrolment in 1968,16 parents provided
information on their child’s respiratory health includ-
ing asthma (age at onset and the number of asthma
attacks during the 12 months prior to enrolment),
bronchitis and pneumonia history, together with
information on their own respiratory health, smoking
history and occupation. Each child underwent lung
function testing. In the 2004 follow-up survey, the
participant’s adult asthma status, smoking history
and occupation (reflecting socio-economic status)
were documented.

The original data have been used in an extensive
investigation of risk factors for asthma remission;
clinical interpretations of these analyses have been
reported previously.17 This analysis is for illustrative
purposes only and uses a subsample of 194 partici-
pants from the TAHS data who reported asthma
during childhood.

Step 1: Check variables in adjustment set are not caused by exposure 
There must be no  causal paths from exposure to any variable in the adjustment set 
(i.e. the exposure has no causal effect on the adjustment variables). This is similar to 
(but stronger than) the usual advice that we should not adjust for variables on the 
causal pathway. 

Step 2: Remove irrelevant variables from the causal diagram 
Remove from the causal diagram any variables that have: 
     (i)   no causal effect on the outcome,  
     (ii)  no causal effect on the exposure, and  
     (iii) no causal effect on any variable in the adjustment set.   
These variables will not induce spurious association so can be ignored. 

Step 3: Remove causal effects of the exposure 
Delete all arrows from the causal diagram that begin at the exposure. This simply 
removes causal effects of the exposure (including the exposure-outcome causal 
pathway(s) of interest) from consideration. 

Step 4: Mark associations induced by adjusting for collider variables 
Draw an undirected line between any two variables that share a direct effect (both 
have an arrow pointing to the same variable). This acknowledges the associations 
induced by adjusting for collider variables. 

Step 5: Remove arrow-heads 
The direction of arrows was useful in the previous steps, particularly for identifying 
bias induced by adjusting for colliders, but it is no longer relevant.  

Step 6: Delete lines touching the adjustment set 
Delete all lines beginning or ending at a variable in the adjustment set. These paths 
will be closed by the proposed adjustment. 

Is the exposure now disassociated from the outcome? 
YES – all non-causal exposure-outcome paths are closed by the proposed adjustment 
NO  – some spurious exposure-outcome association remains 

Figure 3 Summary of Shrier and Platt’s14 six-step rule (origi-
nally from Pearl8).
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Our proposed causal diagram

Our proposed causal diagram to address the
smoking-asthma research question is shown in
Figure 4. This was created by drawing on substantive
knowledge of the underlying causal relationships,
combining subject-matter expertise and results of
previous research.5 We have now included an arrow
from personal smoking to adult asthma as this arrow
represents our research question—the causal effect
we wish to estimate. Figure 4 adds four characteristics
to Figure 1c: chronic bronchitis/poor lung function,
parental asthma, socioeconomic status (SES) and sex.
All variables shown in Figure 4 are measured in the
TAHS data other than underlying atopy.

Confounder selection using the proposed

causal diagram

Because Figure 4 is simply an extension of Figure 1c
(with additional nodes and paths), we know that both
parental smoking and childhood asthma must be
adjusted for. Chronic bronchitis/poor lung function,
SES and sex play a similar role to childhood asthma in

Figure 1a. They are each the only variable in an open
non-causal path that contains no collider variables.
Thus, we must adjust for these variables. Adjusting for
parental smoking, childhood asthma, chronic bron-
chitis, poor lung function, SES and sex closes all non-
causal paths between personal smoking and adult
asthma. Thus, adjustment for these variables is suffi-
cient to remove confounding bias under the assump-
tions depicted in Figure 4. We apply the steps of Shrier
and Platt14 (Fig. 3) in Appendix S1 in the online sup-
porting information to ensure that this proposed
adjustment closes all necessary paths.

Statistical analysis

We have used the proposed causal diagram to select
a set of confounders that we need to adjust
for. However, some modelling decisions remain.
Although our causal diagram suggests that we should
adjust for SES, for example, it does not convey infor-
mation about whether the asthma–SES relationship is
linear across categories or not, nor does a standard
causal diagram convey information about effect-
modification, although some work has been done

v

Sex

Parental 
asthma

Adult 
asthma

SES

Personal 
smoking

Underlying 
Atopy

Parental 
smoking

Chronic bronchitis and
Poor lung function

Childhood 
asthma

v

Personal 
smoking

Parental 
smoking

Parental 
asthma

Adult 
asthma

Underlying 
Atopy

Chronic bronchitis and
Poor lung function

Childhood 
asthma

Sex

SES

(a)

(b)

Figure 4 (a) Proposed causal diagram to investigate the hypothesized causal effect of personal smoking on subsequent adult asthma.
(b) The same diagram with the exposure and outcome shaded and the proposed adjustment set indicated by boxes. In the Tasmanian
Longitudinal Health Study data, all variables in these diagrams are measured other than underlying atopy.
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incorporating such relationships.18,19 Such modelling
decisions must be considered independently of
the causal diagram. To keep the analysis simple, we
have not considered non-linearities or interactions
between variables.

Also for some nodes in our causal diagram, we must
decide which variables best represent these nodes.
For example, do the relationships in Figure 4 repre-
sented by the node ‘childhood asthma’ depend only
on the presence of childhood asthma, or do they addi-
tionally depend on the severity? We believe both are
relevant; thus, our variable(s) must encapsulate both
of these aspects. By restricting the sample to child-
hood asthmatics, we have already adjusted for the
presence of childhood asthma. To additionally
account for the severity of asthma, we adjust for the
number of asthma attacks as an indicator of severity.

To estimate the effect of personal smoking on
subsequent asthma remission among participants
reporting asthma during childhood, we fitted a
multivariable logistic regression model1 for the
outcome of asthma remission (yes/no). We included
personal smoking (ever/never), and the confounders
selected using the causal diagram (poor childhood
lung function, chronic bronchitis, number of asthma
attacks, sex, number of parents reporting smoking
and SES) as independent variables in the model.

Results

Of the 194 participants analysed, 119 (61%) were adult
smokers. Of the smokers, 86 (72%) had subsequent
asthma remission (no adult asthma) compared with
51 (68%) of the never smokers.

In this subsample of data, the unadjusted odds ratio
comparing asthma remission between adult smokers
and non-smokers was odds ratio = 1.23 (95% confi-
dence interval 0.65–2.30, P = 0.53), suggesting that
smokers might have increased odds of asthma remis-
sion but that a lack of association is entirely plausible.
This was reduced to odds ratio = 1.12 (95% confi-
dence interval 0.56–2.27, P = 0.75) by adjusting for
the confounders selected by the causal diagram
approach.

Conclusion from analysis of TAHS data

In this subsample of data, we find little evidence that
adult smoking affects the odds of subsequent asthma
remission. The initial suggestion of a protective effect
of adult smoking was largely removed by adjustment
for variables believed to be causing confounding bias.

The validity of our analysis depends on our postu-
lated causal diagram being correct. If we have omitted
key variables or relationships, then our adjustment
set may be incomplete. Furthermore, we have
assumed that our measured variables perfectly
capture the relationships shown in our causal
diagram. Because this analysis is for illustration only,
we have not further investigated these issues.

DISCUSSION

Causal diagrams (directed acyclic graphs) are a useful
way to communicate the causal assumptions under-

lying an analysis investigating the relationship
between an exposure and outcome. They provide a
simple algorithm to decide which variables should be
adjusted for in a multivariable analysis in order to
isolate the causal effect of interest. However, a causal
diagram that incorrectly portrays the underlying sce-
nario can lead to poor decisions concerning which
variables should be adjusted for. A causal diagram,
therefore, is only as useful as the substantive knowl-
edge used to create it. Given the complexity of many
health research studies, it may be naïve to assume
that an appropriate diagram can always be created.
However, where causal assumptions in the diagram
are uncertain, we could postulate a few competing
diagrams, which may result in different analyses, and
present the competing estimates of effect each being
valid under certain explicitly stated assumptions.

Causal diagrams have been used in many contexts
including: defining and identifying selection bias,20

accounting for measurement error,21 baseline adjust-
ment in analyses of change scores,22 and understand-
ing and identifying biases in indirect treatment
comparisons,23 analyses of time-varying exposures,24

mediation analyses,13 and the estimation of direct and
indirect effects.25 Causal diagrams have also been
applied to understand biases arising due to missing
data.26

In summary, causal diagrams or directed acyclic
graphs are an invaluable tool for confounder selection
in analyses involving non-randomized exposures. By
explicitly stating the causal assumptions underlying
the variable selection process, causal diagrams
increase transparency and facilitate communication
and debate concerning the validity of estimated
causal effects.
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